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Abstract

Qualifying a measuring instrument involves both a com-
parison and a decision:

• Comparison of the metrological parameter(s) of the
instrument as determined by (or evaluated based on)
the results of the calibration and the required (or sup-
posed) values of these parameters derived from tech-
nological or safety requirements (or tolerance in the
general sense) or the manufacturer’s specification of the
instrument. This comparison usually results in a
decision to accept or reject the instrument for use;

• The decision is influenced both by the first order 
(α -type or type I)* and the second order (β-type or
type II)* errors of the decision and also by the uncer-
tainty of the value measured or reproduced by the stand-
ard. A quadratic evaluation of the measured deviations
reduces the risk of the incorrect decisions being made in
both cases.

Introduction

The qualification of a measuring instrument is based on
the di deviations between the measured yi values
provided by the measuring instrument to be qualified
and the respective zi reference (or conventional) values
of the measurand reproduced by or measured with the
standard:

di = yi – zi (1)

D is a random variable since both Y and Z are ran-
dom variables and Y can itself be considered as the sum
of the two random variables. 

The first variable is the expected value of the results
deviating in a random manner from the true or definit-
ive value of the measurand in the range of the measure-
ments (these deviations are called systematic errors and
are estimated with the biases).

The second variable is the classical random error (or
deviation), i.e. the deviation of the measured values
from the expected value or from the average of many
results in practice. 

The metrologist’s task is either to characterize the
measuring instrument with an s(Y) standard deviation
(or a multiple thereof) or to judge if the estimated stand-
ard deviation is less (but not more) than a value that is
(or ought to be) specified for the measuring instrument
to be qualified. 
Note: The instrument’s specification does not usually

define the term accuracy itself, so the user should
consider it either as a multiple of a standard
deviation or as certain limits for the maximum
permissible error (mpe).

The s(Y) standard deviation has to be calculated or
estimated from the results of the calibration and from
the specification of the measurement standard.

As the variance of D is equal to the sum of the
variances of Y and Z, the variance of Y is the difference
of the variances D and Z respectively. The variance of D
can be estimated from the results of the calibration by
eq. (12) according to the so-called or noted type A esti-
mation of the standard deviation (or uncertainty) on the
basis of the experimental or relative frequency-based
concept of the probability. In this case:

(2)

To use this approach the s(Z) standard deviation of Z
has to be estimated from the calibration certificate of
the measurement standard used for the calibration. 

UNCERTAINTY

Qualifying measuring instruments based on 
the quadratic approach of the Guide to the
Expression of Uncertainty in Measurement

DR. PÉTER BÖLÖNI, Sensor Metrology Ltd., Budapest, Hungary

s(Y) =   s2(D) – s2(Z)
√
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* Note: Throughout the text, the uniform denominations
“α -type” and “β-type” are used.
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s(Z) is known this way, at least in principle. Attributing
probability distribution functions to Y and Z, the prob-
ability distribution function of D can be derived and the
probability of the event of:

P
[
 d > k · s(Y)

]
= p (3)

can be calculated for any value of d. If the value db is
found to be out of the limits of the mpe with a low prob-
ability of p(db) then one might reject even an acceptable
instrument. This is the so-called α -type error (conclud-
ing a hypothesis H1 when H0 is true). And as the
absolute values of a few measured deviations can easily
be less (or not more) than the critical value for d one can
obtain acceptable values for d even in the case of meas-
uring instruments having greater errors or standard
deviation than the allowed value. Accepting an “unac-
ceptable” instrument, i.e. accepting the H0 hypothesis
when another value of H1 is true is called the β-type
error.

For an acceptable instrument, a measured deviation
can fall outside the tolerance limits because of a large
(but rare) random error or because of the unknown (and
therefore not considered) error of the measurement
standard, or both. Similarly a measured deviation can
fall within the acceptable range even for an unaccept-
able instrument because of the random nature of the
errors or because of the influence of the unknown error
of the measurement standard, or both. To consider or to
reduce the chances of incorrect decisions being made, at
least three different principles or rules of qualification
are applied and one additional principle is suggested
below.

1 Spreading the risk of an incorrect
qualification

A traditional qualification method is to compare all the
measured deviations with the limits of the mpe’s derived
from the accuracy specification of the instrument:

dl ≤ di ≤ du (4)

where:

• dl is the lower mpe limit (usually negative and may be
a function of the measured value);

• du is the upper mpe limit (usually positive and may be
a function of the measured value); and 

• di is the ith measured deviation.

The measuring instrument will be accepted or quali-
fied as being “acceptable” if the condition in eq. (4) is
met for all the di values. The decision might however be
the subject of both an α -type or a β-type error, since a
measured deviation can fall outside the tolerance limits
even for an acceptable instrument because of the occur-
rence of a large but rare random error or because of the
unknown (and therefore not considered) error of the
measurement standard, or both. 

On the other hand several consecutive measured de-
viations can fall within the acceptable range even for an
unacceptable instrument because of the random nature
of the errors and the influence of the unknown error of
the measurement standard, or both. The probabilities of
these two incorrect decisions being made are often con-
sidered to be equal or at least similar in value and
neglected for this reason. This practice is often used in
legal metrology although the owner and user of incor-
rectly rejected and incorrectly accepted instruments is
not necessarily one and the same. 

Furthermore, since alternative H1 hypotheses to
describe the behavior of unacceptable instruments are
usually not proved, the probability of accepting an
unacceptable instrument can hardly be ascertained.
Having proved hypotheses for the probabilities of the 
D deviations, the probability of α -type errors can be cal-
culated: 

(5)

where ϕ(D) is the probability density function of the
deviations with the estimation s2 (D) for the variance.
Chebisev’s equation can be used in cases where no
proved hypothesis is available (i.e. when the distribution
of the sample deviates significantly from the supposed
one). The original form of the equation is:

(6)

where:

• M(D) is the expected value of D, which is zero in the
present case; and

• ε is a small positive number.

Let  dl = du ≅ k ⋅ s(D) = ε where k can be the well-
known and widely used coverage factor. In this case:

(7)

The uncertainty of the zi reference values contributes
generally to the chance of the incorrect decision being
made, but this contribution can often be neglected after
reducing it to below one tenth of the  dl = du values.

P(α) –∼ 1 – ∫ϕ(D) ⋅ d(D)
d

u

dl

P
[
 D – M(D) > ε

]
= 

varD

ε2

P
[
 D ≥ k ⋅ s(D)

]
≤

1

k2
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2 Qualification for maximum confidence 
of operation

Another traditional qualification method is to compare
all the measured deviations with the “tightened” mpe
limits:

dl + Uz ≤ di ≤ du – Uz (8)

where:

• dl is the lower mpe limit;
• du is the upper mpe limit;
• di is the ith measured deviation; and
• Uz = k ⋅ s(Z) is the uncertainty of the reproduction or

measurement of the reference or conventional value
of the measurand.

The measuring instrument will now be accepted or
qualified as being “good” if the condition in eq. (8) is
met for all the di values. An unacceptable instrument
(i.e. one that failed to meet the specifications) will hardly
be qualified as “good” in this way. 

This decision might however more often be the
subject of an α -type error than in the case of the “shared
risk”, since a measured deviation can fall outside the
tightened tolerance limits with somewhat more prob-
ability even for an acceptable instrument. The reason for
this can be the occurrence of a large and less rare
random error or because of the unknown (and therefore
not considered) error of the measurement standard, or
both. Accepting ϕ(D) for the probability density function
of the differences with the estimation s2(D) for the
variance, the probability of the α -type error is:

(9)

and the formula in eq. (10) can be used if no suitable
ϕ(D) probability density function is available for the
differences:

(10)

3 Avoiding the rejection of an instrument 
that meets the specifications

One more traditional qualification method is to
compare all the measured deviations with the extended
limits of the mpe’s:

dl – Uz ≤ di ≤ du + Uz (11)

where:

• dl is the lower mpe limit;
• du is the upper mpe limit;
• is the ith measured deviation; and
• Uz = k ⋅ s(Z) is the uncertainty of the reproduction or

measurement of the reference or conventional value
of the measurand.

The measuring instrument will now be accepted or
qualified as being “good” if the condition in eq. (11) is
met for all the di values. Practically all of the “good”
instruments will be accepted but the chance of un-
acceptable instruments being accepted (i.e. those that
fail to meet the specifications) will be increased this way. 

This decision might more often be the subject of a
β-type error than in the case of the “shared risk”, since a
measured deviation can fall within the extended
tolerance limits with somewhat more probability even
for an unacceptable instrument because of the occur-
rence of a few consecutive small and (unlikely but
possible) random errors or because of the unknown
(and therefore not considered) error of the measure-
ment standard, or both. 

4 A quadratic approach

Reducing the probability of unacceptable instruments
being accepted by tightening the limits increases the
probability of good instruments being rejected; reducing
the probability of good instruments being rejected by
extending the limits of acceptance increases the probab-
ility of unacceptable instruments being accepted. The
probability of making incorrect decisions can be reduced:

• using measurement standards with low measurement
uncertainty or reproduction when Us is not more than
1/10 of the mpe (this is expensive and affects only one
of the incorrect decision sources);

• using higher values for the coverage factor than k = 2
(though the demand for higher confidence does not
aid in intuitive thinking but allows only likely ten-
dencies or facts to be stated or recognized); or

• using the quadratic estimation of the Guide for the
qualification as well. 

Perhaps the accuracy or the uncertainty of the meas-
uring instrument can be characterized either with the
s(Y) standard deviation or with a multiple thereof. For
this the experimental standard deviation of the results of
the calibration shall first be calculated according to the
so-called A type evaluation of the results:

P(α) = 1 –   ∫ ϕ(D) · d(D)
du – Uz

dl + Uz

P
[
 d > k ⋅ s(d) – Uz

]
≤

s2(D)

(k ⋅ s(D) – Uz)
2
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(12)

Substituting in eq. (2) the value of s(D) as calculated
in eq. 12, one can compute a standard deviation which
characterizes the measuring instrument with an experi-
mentally determined expanded uncertainty that con-
forms to the Guide:

(13)

This can be used directly for uncertainty calcula-
tions, is not sensitive to any large individual deviation
which can itself decide the qualification of the instru-
ment, and is not affected by the limited accuracy of the
measurement standard used for the calibration. 

Extended tests have shown that above a certain low
limit in the number of measured deviations, this second
moment or non-central variance based on the s(Y) para-
meter can well describe the performance of the measur-
ing instrument to be qualified and this s(Y) parameter
can be interpreted according to existing international
metrological normative documents.

Summary and conclusion

Traditional linear principles of qualification cannot
exclude the possibility of incorrect decisions being
made. The probabilities of this occurring can be reduced
by applying the quadratic evaluation of the deviations
and by considering the standard deviation of the
reproduction or measurement of the reference value.
This approach was presented to the 49th General
Assembly of CECIP (Comité European des Constructeurs
d’Instruments de Pesage) for further consideration. K
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Note: At the time of going to press, the OIML TC 3 Metrological
control meeting (1–3 June, Paris) has not yet taken place;
one of the topics to be discussed at this meeting is meas-
urement uncertainty in legal metrology. Information on the
outputs of the meeting will be given in the October 1999
issue of the Bulletin.


