
Abstract

In some cases, mathematical statistical checking is the
only way to adequately test gambling devices and the two
most frequently used methods (i.e. the 3σ method and the
χ 2 method) are discussed in this paper. Because the χ 2

method cannot be used in its classical form for testing
lottery-type games, it was necessary to develop it so that it
could also be applicable for this purpose. For both roulette
and lottery-type games, the second and the third members
in the series of the distribution function of the variable χ 2

are also determined in order to form an improved test
method.

1 Introduction

In Hungary, as in some other European countries, the
technical control of gambling devices is legally the task
of the national metrological institute; mathematical
statistical checking of the random (and therefore fair)
operation of such devices also falls under the institute’s
responsibility. In some cases huge prizes are drawn by
simple devices made of wood, whose structure cannot
be tested by classical metrological means; mathematical
checking of these devices is therefore the only possible
official control method. Considering the fact that in this
field written standards are not available, it is vital that
the authority’s decision as to whether a device is ac-
cepted or rejected be well-founded and indisputable.

This paper shows the mathematical bases of the two
most important statistical methods mentioned above,
which are most frequently used for type approval and
verification. These mathematical methods can be used
not only for gambling devices but also for other pur-
poses, for example to check a hypothesis about a prob-
ability distribution or to check a computer’s random
number generator. 

In some cases during the author’s research it was
necessary to further expand on existing methods, or
even to elaborate new ones; these can be found in
paragraphs 4, 5 and 6 below.

2 The 3σ test

The method is given for the case of roulette wheels but
can, of course, be used in other fields too.

Roulette wheels used in Hungary have numbers 1 to
36 plus a single zero, so the number of possible spin
outcomes equals 37, usually designated by ν. One of the
steps in testing the randomness is to check the
hypothesis that the probability of spinning any number
out of the 37 is the same: 

pj = 1 ( j = 0, 1, ..., 36).ν

When a roulette wheel is submitted for testing the
client must provide a list of the last N spins, in sequen-
tial order. Such lists used to be written by hand, though
nowadays they are made electronically using a data
collector connected to the corresponding roulette table
electronic display device. The ith number on the list, i.e.
one of the numbers 0 to 36, is designated by
xi (i = 1, 2, ..., N) and N is prescribed not to be less than
100ν = 3700 in order to ensure that all 37 numbers occur
at least 100 times on average. The prescribed number
N = 100ν can really be judged as being a compromise:
sometimes clients consider it as being too big, but to
ascertain the smaller deviations of a roulette wheel more
data would be necessary.

On the basis of the list the frequencies kj of the
occurrence of the numbers j (j = 0, 1, ..., 36) are
determined, where the frequency kj shows how many
times the number j occurred among the values xi.
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In the case of a roulette wheel operating regularly,
i.e. randomly, every frequency kj is a random variable
following a Bernoulli distribution with an expectation:

and with a theoretical standard deviation: 

So for every frequency kj the condition:

µj – 3σj ≤ kj ≤ µj + 3σj

has to be fulfilled with a high probability, the value of
which is approximately 99.73 %. The factor 3 that pre-
cedes σj gave this test its name, which - according to the
author’s experience - can be judged as being optimal.
The choice of a smaller factor would result in a higher
risk of the first order error, when roulette wheels operat-
ing correctly would be rejected more often, since the
data would be outside the interval more often. The
choice of a higher factor would increase the risk of the
second order error, when unacceptable roulette wheels
would be accepted.

The above method is used by most roulette wheel
manufacturers to check their product, with the modifi-
cation that the frequencies of odd/even, red/black, etc.
numbers are also examined. However, this test only
controls the “uniformity” of the frequencies of the num-
bers spun, and says nothing about their randomness. A
roulette wheel spinning consecutively increasing num-
bers (e.g. 15, 16, 17 or 35, 36, 0, etc.) would pass the
above test properly; every frequency kj would fall in the
center of the prescribed interval, despite the fact that the
“decisions” of the given roulette wheel would be extremely
predictable and not random at all. The operation of a
roulette wheel is deemed to be random if no regularity
can be found in adjacent numbers. Hence the randomness
of the sequence of the numbers spun must also be checked.

For this purpose one can employ several methods,
for instance the correlation method. According to the
author’s experience one of the simplest, most efficient
and most demonstrative methods is to take the differ-
ence between the numbers in sequence:

yi,1 ≡ xi+1 – xi (i = 1, 2, ..., N–1).

Since the previous differences can be negative, the
next non-negative quantities zi,1 are formed:

The so-called modulated differences zi,1 can have values
between 0 and 36 too, and if the roulette wheel operates
regularly the distribution of the frequencies kj, calcu-
lated on the basis of the values zi,1, must also obviously
be approximately uniform, similarly to the frequencies kj
calculated from the original data in the list. Hence for
the frequencies kj calculated on the basis of the values
zi,1, the foregoing 3σ test is also performed, taking (N – 1)
instead of N. A wheel spinning numbers incrementally
would fail this test; the frequency k1 belonging to the
“channel” number 1 (i.e. belonging to zi,1 = 1) would be
much bigger than the upper limit of the given interval
and all other frequencies kj would equal zero.

Considering that the 3σ test is used not only for rou-
lette wheels, but to control computer programs drawing
prizes, for example, the above test is performed not only
for the differences zi,1, calculated from the adjacent
numbers on the original list, but for the modulated dif-
ferences zi,k, that are calculated from the kth neighbors.
The zi,k modulated differences are defined as follows:

yi,k ≡ xi+k – xi ; here k = 1, 2, 3, ... and i = 1, 2, ..., N – k.

Using this method the gross errors, the short period-
icity of the random generator of the computer or of the
drawing program can be found out.

Performing the test for the 4th neighbors too, there
are 5 × 37 = 185 frequencies on the data page of a rou-
lette wheel. Since “only” P = 0.9973 probability belongs
to 3σ, among these data sometimes (but regularly) some
frequencies do not fulfil the 3σ condition, however the
roulette wheel under control operates well. In these
cases the decision to accept or reject it is partly sub-
jective; the quantity, the place (the column and the line
in the page) and the magnitude of the “overstepping” are
examined.

The great advantage of the 3σ test is that it can
generally be used for most gambling games such as slot
machines or for lottery-type games, and in the case of
rejection it gives an indication as to the possible reason
for the deviation. However the 3σ test does have a
disadvantage: unambiguous “mechanical” decisions
cannot be made in the case of overstepping, i.e. when
one or more frequencies are outside the given interval.
Partly for this reason and also to render the decision
better founded, as an addition to the 3σ method some-
times the χ 2 test is also performed on the same data. In
other cases only the χ 2 method is used.
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µj ≡
〈
kj

〉 
= Npj = Nν

σj ≡ +   
〈
(kj – µj)

2〉
= +   Npj(1 – pj) = +    N

(
1 – 1

)
ν νABBBBB ABBBBB ABBBBB

zi,1 ≡

{ yi,1 if yi,1 ≥ 0

yi,1 + ν if yi,1 < 0

zi,k ≡

{ yi,k if yi,k ≥ 0

yi,k + ν if yi,k < 0

(1)



3 The χ 2 test for roulette-type games

Games are considered as being of the roulette-type
where, at least in principle, it is possible to witness the
same phenomenon of successive incremental spins
described above. Roulette wheels (and most slot ma-
chines) belong to this category for instance. In the case
of roulette wheels, repetitions of numbers must occur
regularly. From the point of view of mathematics,
roulette-type games differ from lottery-type games to a
significant degree: in the latter, the numbers drawn
during one game are always different. Such games are,
for instance, the 90/5 lottery, where five different num-
bers are always drawn out of 90, the 45/6 lottery, the
80/20 keno, and all types of bingo games.

The χ 2 test is based on the very important statistical
theorem described below, which is widely used for
checking hypotheses on probability distributions.

Let the random events A1, A2, …, Aj, …, Aν mutually
exclude each other and let them constitute a complete
system of events. In this case for the probabilities 
p1, p2, …, pj, …, pν of the events the condition:

p1 + p2 + … + pj + … + pν = 1 

is true, i.e. during one experiment one (and only one)
event out of ν different possible events will occur. Let kj

designate the frequency of the event Aj occurring out of
N experiments where, of course, kj = 0, 1, 2, ..., N and

(it is important to note that the greatest possible value of
each frequency kj equals N, which is the total of all the
numbers spun in the case of roulette wheels). The set of
frequencies kj follows a ν-variable Bernoulli distribu-
tion:

P(k1, k2, ..., kv) = pk
1

1 pk
2

2 ...pkν
ν

and according to the theorem the distribution limit of
the next random variable constituted from the frequen-
cies kj:

is a χ 2 distribution with r = ν – 1 degrees of freedom, if
N → ∞. Using the formulae, if N → ∞: 

Here the index R of the variable χ 2 indicates the
roulette-type game, and Fν–1(x) designates the distribu-
tion function of the χ 2 distribution with r = ν – 1 degrees
of freedom. Developed over the course of time, the fact
that a random variable and a probability distribution are
traditionally designated by the same symbol χ 2 may be
inconvenient, though the random variable χ 2

R appearing
in (2) above is of an χ 2 distribution only in the case when
N → ∞, and not in general.

As a reminder, the density function fr, the distribu-
tion function Fr and the first two moments of the χ 2

distribution with r degrees of freedom are given, which
have the greatest importance during practical use:

Here the Γ function is traditionally defined as:

If x is an integer, then Γ(x) = (x – 1)! The expectation
of the χ 2 distribution with r degrees of freedom

For practical purposes it may also be important that
the χ 2 distribution with r degrees of freedom can be well
approximated by a normal distribution, whose expecta-
tion equals r and whose standard deviation equals ABB2r, if
the degree of freedom r is big enough.

When performing the mathematical test on roulette
wheels, for instance, the χ 2 method can be used as fol-
lows:

a) on the basis of the data in the list sent in by the client,
the frequencies kj are determined;

b) supposing that the pj = 1ν = 137 condition is true, i.e. the
roulette wheel under control operates regularly, each
number is spun with the same probability, on the
basis of formula (2), the value of the variable χ 2

R is
calculated;

c) for an appropriate probability P of acceptance (the
value of which usually equals 0.9973 belonging to the
3σ), supposing that the number N of the data is big
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ν
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∞
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enough for formula (3) to be used, the critical value
χ 2

crit is determined from the condition

P = φ
χ 2

R
(x = χ 2

crit); 

d) the values of the variable χ2
R and the critical values

χ 2
crit are also determined for the modulated differ-

ences zi,k, if necessary.

From a mathematical point of view the roulette wheel
can be accepted if the condition(s):

χ2
R ≤ χ 2

crit

are fulfilled for the base data and for the modulated
differences zi,k as well.

The great benefit of the χ 2 test is that it always gives
the possibility to make an unambiguous decision, but its
disadvantage is that it does not give any information
about the possible reasons in the case of rejection. 

4 Improvement of the χ 2 test for 
roulette-type games

The χ 2 test is used not only for checking roulette wheels,
where the condition N >> 1, necessary for the use of
formula (3), is fulfilled in practice, but its application
would sometimes be useful when the number N of the
experiments is not big enough or if it cannot be ascer-
tained whether it is big enough. In these cases the deci-
sion of the authority based on mathematical tests would
not be well enough founded and sufficiently indisput-
able. For this reason the distribution function φχ 2

R
(x) of

the random variable

defined by formula (2), was examined in detail, and it
was established that the relation φχ 2

R
(x) = Fν-1(x), that is

true in the case of N → ∞, is the first member, inde-
pendent of N, of a series according to the powers of

In order to make the distribution function more
exact the second and the third members of the series
were determined too. Since the second member, which
is proportional to

equals zero, the distribution function of the variable 
χ2

R is: 

The previous formulae contain the expression

which is small for a fixed value of ν when all the prob-
abilities pj are almost equal, i.e. when the probability
distribution of the events Aj is approximately uniform.
This fact confirms the rule, as can be seen from the liter-
ature, that prescribes almost uniform distribution for
the successful use of the first approximation, i.e. of the
classical χ2 test. According to that rule it is also necessary
for every event Aj to occur at least 10 times. In the case
of slot machines neither the first nor the second
conditions can be fulfilled: the probability distribution
of the different winning combinations occurring differs
from the uniform distribution to a significant degree,
and it cannot be ensured either during all the tests that
the very infrequent “jackpot” will occur 10 times at least. 

Hence considering the second and the third member
in the series makes it possible to prove the correctness of
using the first approximation or to make well-founded
decisions even in the cases when the conditions neces-
sary for the use of the first approximation cannot be
fulfilled. 

5 The χ2 test for lottery-type games

If out of the numbers 1, 2, ..., j, ..., ν during one draw n
different numbers are drawn, for instance in the case of
a 90/5 lottery n = 5 different numbers out of ν = 90 and
every number has the same probability of being drawn,
then the probability of being drawn is obviously:

pj = p = n for all the ν numbers.ν
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Σ
ν

j=1

1

ABBN

1

ABBN

(kj – Npj)
2

Npj

2x
ν – 1

1
pj

1
pj

1
pj

ν 2 + 2ν – 2 –

– 3ν 2 – 6ν + 4

8Ν

24Ν

5

Bx2

ν + 3 1

N
3/2

( )x(A + 2B) – 

χ 2
R ≡

φχ2
R
(x) = Fν-1(x) +

where:

and fν-1(x) and Fν-1(x) are the density function and distri-
bution function of the χ 2 distribution with ν – 1 degrees
of freedom, respectively.

A =

B =

fν-1(x) + O– A – B +
ν + 1

[ ]

Σ
ν

j=1

Σ
ν

j=1

Σ
ν

j=1



If the draw is repeated N times, the frequencies kj of
the numbers j occurring among the numbers drawn can
be determined from the data of the N drawings, similarly
to roulette-type games. However, here for the frequen-
cies kj obviously the following conditions have to be
fulfilled:

kj = 0, 1, 2, ..., N and 

Every frequency kj follows the same Bernoulli distri-
bution:

with the expectation 
〈
kj

〉
≡ µ = Np and with the variance〈

(kj – µ)2
〉

≡ σ2 = Np(1 – p).
It is quite logical on the basis of the foregoing to

define the next random variable:

(4)

similarly to the case of roulette, and to hope that its
distribution extends to a known distribution limit, for
example to the evident χ 2 distribution, if N → ∞. The
distribution limit of this variable χ2

L (where L refers to
the lottery) cannot be derived on the basis of the theo-
rem shown in paragraph 3 above, since the conditions of
use of that theorem are not fulfilled here; the set of fre-
quencies kj does not follow a multivariable Bernoulli
distribution, however, every kj in itself is of (simple)
Bernoulli distribution. Even in principle it is impossible
that every number occurs Nn times (as in the case of
roulette), though the number of all the drawn numbers
equals Nn. Every number j can occur N times at most.
However, it is a lucky circumstance, that for n = 1 the
variable χ2

L is the same as the variable χ2
R, if the relation

pj = 1/ν is true. Therefore their distributions (and conse-
quently their distribution limits) must be the same as
well. This fact makes it easier to check the correctness of
the relations obtained. 

In order to “guess” the distribution limit required, let
us determine the expectation of the variable χ2

L.

Is the distribution limit that is sought after a χ 2

distribution with a degree of freedom ν – n? Let us also

determine the variance of χ2
L. As a result of calculations

that are more complicated than the foregoing,

Because for N → ∞

guessed that the distribution of the next variable Y

(5)

goes to a χ 2 distribution with ν – 1 degrees of freedom,
since the expectation of the variable Y equals µY = v – 1
and its variance is:

Indeed, using the method of the characteristic func-
tions it was proved that for the case of N → ∞ 

φY = Fν-1(x) (6)

The theorem can also be proved for the more general
case, when the probabilities pj belonging to the event,
that the number j is occurring among the n numbers
drawn, are not equal, but this proof is quite complex and
is not necessary for our purposes.

Applying the above theorem the χ 2 test can also be
used for lottery-type games, if the number N of the draw
results, in the list available for the tests, is great enough.

6 Improvement of the χ 2 test for 
lottery-type games

Sometimes huge prizes are drawn in lotteries, which is
why it is of special importance that the mathematical
test methods of the randomness of the games must be
indisputable. For this purpose the second and third
members of the distribution function of the variable Y,
given by formula (5), were defined as well. Hence the
distribution function:
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where:

It can be seen that n appears only in the formula of ε.
The values of ε for n = 1 and for n = ν – 1 are the same,
therefore the distributions of Y must also be the same in
these two cases. This fact is not unexpected at all, since
the task of choosing one number out of ν is equivalent to
the task of choosing ν – 1 different numbers out of ν. At
the same time, for n = 1 the distribution function of the
variable Y is equal to the distribution function of the
variable χ 2

R, if

is substituted therein, as it must be, since fulfilling con-
dition (7) - i.e. in the case of uniformly distributed
probabilities pj - the variable χ 2

R forms a special case of
the variable Y. 

Because in the case of lottery-type games the order
in which the numbers are drawn is not of any signifi-
cance, here it is not reasonable to perform the χ 2 test for
the modulated differences zi,k too. The sequence of the
results of lottery drawings has not been recorded in
statistics for several decades; the numbers drawn are
reported only in increasing order.

7 Conclusions

One means (and in the given cases the only possible
means) of testing gambling devices is the mathematical
statistical checking of draw or spin results. This paper
shows the 3σ and the χ 2 tests, which are most frequently
used. The advantages and disadvantages of both methods
are given, on the basis of which it can be established that
the two methods are complementary to each other,
therefore if possible both should be used. If a χ 2 test
results in a rejection, it is useful to perform the 3σ test
too in order to ascertain the reasons for this rejection.

The conventional χ 2 method cannot be used for
testing lottery-type games, which is why the author has
put forward additional calculations that allow the χ 2 test
to be used for this purpose as well.

Considering that the χ 2 test is used not “only” for
checking scientific hypotheses but also for establishing
an official decision about acceptance or rejection, the
improvement to the χ 2 test was made for both kinds of
games, i.e. for roulette and lottery-type games. This
gives the possibility to prove the correctness of use of the
first approximation or to use the χ 2 test in cases when
the conditions for using the first approximation cannot
be fulfilled, for instance when the number N of the
experiments is not big enough, or when the probability
distribution of the events Aj is not uniform. K
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