
Abstract

The provision of the mass scale below one kilogram is
achieved by subdivision. This paper describes one of the
methods used by INM including details of the weighing
techniques, weighing schemes, equipment used and the
uncertainty of measurement of all the standards involved.

1 Introduction

INM is the custodian of the Prototype Kilogram No. 2.
As such, it is INM’s task to propagate the Romanian
mass scale by subdivision and multiplication of the
kilogram. 

Class E1 weights ensure traceability to the national
mass standard (the value of which is derived from the
International Prototype of the kilogram, maintained by
the BIPM) and weights of Class E2 and lower [1]. They
are used as standards at the thirteen Romanian
calibration laboratories.

2 Test procedures

The set (500...1) g of Class E1 weights usually has the
following composition:

500 g, 200 g, 200* g, 100 g
50 g, 20 g, 20* g, 10 g

5 g, 2 g, 2* g, 1 g

The 1 kg reference standard, of known mass, is used
for calibration. Mass determinations are carried out by
subdivision (to link standards having different nominal
values up with a reference standard). Depending on the
weighing scheme, this procedure requires a specific
minimum number of standards. By the method of least
squares adjustment, the mass departures and their
standard deviations are calculated.

Weighing is always carried out as substitution
weighing, i.e. single weights or combinations are always
compared with another combination of the same
nominal value. The difference between the balance
indications has the symbol ∆m and it is necessary to
apply air buoyancy corrections to the observed weighing
differences. 

If “y” is the new corrected difference, this gives:

y = ∆m + (ρa – ρo)(V1 – V2) (1)

where:

y is the corrected indication;
∆m is the difference in balance readings calculated

from one weighing cycle (RTTR, where R is the
reference standard and T is the test weight);

ρo = 1.2 kg ⋅ m-3, the reference air density; 
ρa = air density at the time of the weighing; and
V1, V2 are the volumes of the standards (or the total

volume of each group of weights) involved in the
measurement.

In designing the scheme, all the masses from 1 kg to
1 g are broken down into decades. A weighing scheme
with 12 equations per decade is used in the calibration
[1]. The first decade includes the 1 kg standard.

For subsequent decades the role of the standard is
taken by the “1” from the previous decade; thus the
100 g, 10 g masses become intermediate standards,
whose uncertainty is propagated directly to masses in
the decade they head and hence to those in subsequent
decades.

With the reference standard, the mass having
nominal values: 500 g, 200 g, 200* g, 100 g, Σ100 g (the
sum of 50 g, 20 g, 20* g and 10 g from the next decade)
shall be calibrated using a 1 kg mass comparator. The
observations are of the same accuracy (for all mass
comparisons the same balance was used in the first
decade). 

Once all the weighings have been completed, the first
step consists in the formation of the design matrix.

Matrix “X” contains the information about the
equations used (the weighing scheme) and matrix “Y”
contains the measured differences from these equations.

11O I M L  B U L L E T I N V O L U M E X L I I  • N U M B E R 3  • J U LY 2 0 0 1

t e c h n i q u e

WEIGHTS

Test procedures for Class E1
weights at the Romanian
National Institute of
Metrology: Calibration of
mass standards by sub-
division of the kilogram

ADRIANA VÂLCU, Romanian Bureau of Legal
Metrology, National Institute of Metrology,
Romania



Denote:

X = (xij);
i = 1...n;
j = 1...k;
xij = 1, –1 or 0;
β is (βj)  vector of unknown departures; and
Y is (yi) vector of measured values (including buoyancy

corrections).

1000 g 500 g 200 g 200* g 100 g Σ100* g

The first row of the matrix represents difference in
mass between the +1 and the –1 weight, for example:
(500 + 200 + 200* + 100) – 1000 = y1

If (XT ⋅ X) is the matrix of the normal equations, this
gives:

(XT ⋅ X) ⋅ β = XT ⋅ Y (2)

where XT is a transpose of X:

The next step introduces two matrices: (XT ⋅ X)-1 is
termed the inverse of (XT ⋅ X) and the product 
(XT ⋅ X)-1XT.

The matrix design contains only the weighing
equations. For this reason, the system can not be solved
because the determinant of (XT ⋅ X) is zero and the
inverse (XT ⋅ X)-1 does not exist.

To overcome this problem the Lagrangian multi-
pliers method is applied [3, 4] which consists of adding
the reference standard (restraint mR) to the vector “Y”,
the Lagrangian multipliers λ to the vector “β”, a line
k + 1 and a column k + 1 (both containing the elements
1,0,1) to the normal equation and to the matrix XT as
follows:
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–1 1 1 1 1 0
–1 1 1 1 0 1
0 1 –1 –1 –1 0
0 1 –1 –1 0 –1
0 0 1 –1 1 –1
0 0 1 –1 1 –1
0 0 1 –1 –1 1
0 0 1 –1 –1 1
0 0 1 0 –1 –1
0 0 1 0 –1 –1
0 0 0 1 –1 –1
0 0 0 1 –1 –1

X =

–1 –1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
1 1 –1 –1 1 1 1 1 1 1 0 0
1 1 –1 –1 –1 –1 –1 –1 0 0 1 1
1 0 –1 0 1 1 –1 –1 –1 –1 –1 –1
0 1 0 –1 –1 –1 1 1 –1 –1 –1 –1

XT =

2 –2 –2 –2 –1 –1
–2 4 0 0 0 0
–2 0 10 0 0 0
–2 0 0 10 0 0
–1 0 0 0 10 0
–1 0 0 0 0 10

XT ⋅ X =

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12

Y =

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
mR

Y =

β1
β2
β3
β4
β5
β6

β =

2 –2 –2 –2 –1 –1 1
–2 4 0 0 0 0 0
–2 0 10 0 0 0 0
–2 0 0 10 0 0 0
–1 0 0 0 10 0 0
–1 0 0 0 0 10 0
1 0 0 0 0 0 0

XT ⋅ X =



The last column and row contains the factor
hj = mj/mr, the ratios between the nominal values of the
unknown weights (mj) and one of the reference (mr).

The best estimate of β, 〈β〉 for an over-determined
system of equations “X” is given by:

〈β〉 = (XT ⋅ X)-1 XT ⋅ Y (3)

3 Example of a least-squares analysis:
Equipment, standards and results

3.1 Equipment

The balances used in the measurements in the range
from 1 g to 500 g are listed below:

Type Max Standard Indication
deviation, mg

AT 1005
(Mettler) 1 kg 0.01– 0.02 Digital

H20
(Mettler) 160 g 0.01 Optical

2405
(Sartorius) 30 g 0.002 Optical

Additionally, the mass laboratory is equipped with
instruments to measure:

• the pressure, measured using a standard barometer
(U = 2 mbar, k = 2);

• the relative humidity, measured using a standard
psychrometer (U = 3 %, k = 2); and 

• the temperature, measured using a standard thermo-
meter (U = 0.4 K, k = 2).

From the air parameters, the air density is calculated
using the equation recommended by the CIPM [2].

3.2 Standards

The 1 kg reference standard is used as the known mass
for the calibration, where: 

• V = 127.7398 cm3, 
expanded uncertainty Uv = 0.0024 cm3, k = 2.

• conventional mass mcr = 0.999 996 891 kg, 
expanded uncertainty U(mcr) = 0.044 mg, k = 2.

The observed mass differences read:

The vector 〈β〉 with the unknown masses, according
to equation (3) above, gives: 
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–1 –1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 –1 –1 1 1 1 1 1 1 0 0 0
1 1 –1 –1 –1 –1 –1 –1 0 0 1 1 0
1 0 –1 0 1 1 –1 –1 –1 –1 –1 –1 0
0 1 0 –1 –1 –1 1 1 –1 –1 –1 –1 0
0 0 0 0 0 0 0 0 0 0 0 0 1

XT =

0 0 0 0 0 0 1
0 1/4 0 0 0 0 1/2
0 0 1/10 0 0 0 1/5
0 0 0 1/10 0 0 1/5
0 0 0 0 1/10 0 1/10
0 0 0 0 0 1/10 1/10
1 1/2 1/5 1/5 1/10 1/10 0

(XT ⋅ X)-1=

β1
β2
β3
β4
β5
β6
λ

β =

3.780
3.3911
– 0.04
– 0.05
0.01
0.01
0.025
0.028
0.017
0.017
0.020
0.022

– 3.109

Y =

1000 g – 3.109 mg
500 g + 0.115 mg
200 g + 0.075 mg
200 g + 0.061 mg
100 g + 0.020 mg
Σ 100 g + 0.029 mg

〈β〉 =

The inverse of XT ⋅ X will be:



The value assigned to the summation Σ 100 g by the
first decade constitutes the restraint for the second
decade with the individual weights in the summation
being calibrated separately in the second series. The
summation of weights Σ 10 g becomes the restraint for
the third decade. Then, the same procedure is used for
the second and the last decades.

4 Analysis of uncertainties

4.1 Type A uncertainty

If the adjusted mass difference of the weighing
equations is 〈Y 〉 = X ⋅ 〈 β〉, the residual for each equation
is calculated as follows:

〈e〉 = Y – 〈Y 〉 (4)

The calculation of 〈e〉 for the example gives the
results:

The standard deviation “s” of the observations is
calculated by:

The residuals “res.” are the elements of the vector 〈e〉;
“ν” = n – k + 1 represents the degrees of freedom (“n – k”
is the difference between the number of performed
observations and the number of unknown weights; “1” is
the number of the restraints). According to this equation
the standard deviation is:

s = 0.007 mg

The variance – covariance matrix for 〈β 〉 is given by:

Vβ = s2(XT ⋅ X)-1 (6)

where the variances on the values of the solutions 〈β〉 are
given by the diagonal elements of the matrix (XT ⋅ X)-1

denoted by cij. The off-diagonal elements of the matrix
give the covariance between the weights.

The standard deviation (uncertainty of type A) of a
particular unknown weight is:

The random uncertainty uA(βj) has a “local” com-
ponent arising from measurements in the current
decade and after the first decade, a propagated
component arising from random uncertainty in the
intermediate standards. 

4.2 Type B uncertainty

The components of type B uncertainties are:

4.2.1 Uncertainty associated with the reference
standard 

where hj is described above.
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– 2 ⋅10-3

2.1 ⋅ 10-3

10 ⋅ 10-4

0
5 ⋅ 10-3

5 ⋅ 10-3

2 ⋅ 10-3

5 ⋅ 10-3

– 9 ⋅ 10-3

– 9 ⋅ 10-3

8 ⋅ 10-3

8 ⋅ 10-3

〈e〉 =

0
0.0035
0.0022
0.0022
0.0022
0.0022

mguA(βj) = s cij =ABB 

0.0220
0.0110
0.0044
0.0044
0.0022
0.0022

mg (7)ur (βj)= hj ⋅ umcr =

0 0 0 0 0 0 1
0 1/4 0 0 0 0 1/2
0 0 1/10 0 0 0 1/5
0 0 0 1/10 0 0 1/5
0 0 0 0 1/10 0 1/10
0 0 0 0 0 1/10 1/10
1 1/2 1/5 1/5 1/10 1/10 0

Vβ = ⋅ 0.000049

res2
iABBBBn

i=1
Σ1

ν
s = (5)



4.2.2 Uncertainty associated with the air buoyancy
corrections

ub
2

(βj) = (Vj – hjVr)
2 ⋅ u2

ρa + (ρa – ρo)2(u2
Vj + hju

2
Vr) (8)

where:

Vj ,Vr = volume of test weight and reference
standard, respectively;

u2
ρa = uncertainty  for the air density;

ρo = 1.2 kg⋅m-3 is the reference air density;
u2

Vj , u2
Vr = uncertainty of the volume of test weight

and reference standard, respectively.

4.2.3 Uncertainty due to the display resolution 
of a digital balance

For the first decade where a digital balance with the
scale interval of d = 0.01 mg is used, the uncertainty due
to resolution is [1]:

(9)

4.3 Combined standard uncertainty

The combined standard uncertainty of the conventional
mass of the weight βj  is given by:

uc(βj) = [uA
2
(βj) + ur

2
(βj) + ub

2
(βj) + ud

2 ] 1/2 (10)

The summation contains all the contributions des-
cribed above.

4.4 Expanded uncertainty

The expanded uncertainty “U” (with k = 2) of the con-
ventional mass of the weights βj is as follows [8]:

5 Uncertainty budget for the first decade

Table 1 on page 16 shows the results obtained from the
least squares analysis of the weighing data and their
associated uncertainties. It also lists the contribution
due to the uncertainty in the value of the standard, in the
buoyancy correction and in the balance.

6 Conclusions

A calibration scheme for mass standards below 1 kg has
been described. The whole set of masses is calibrated,
decade by decade, in terms of a 1 kg standard. 

The test procedure described leads to an efficient
calibration of sets of class E1 weights, also used to
calibrate laboratory standards with lower uncertainty.

The subdivision weighing scheme and the electronic
mass comparator used lead to an appreciable reduction
in uncertainty in each mass value, compared with
previous calibrations.

One way to reduce the uncertainty and to obtain
better results is to use balances of much greater ac-
curacy and in near perfect environmental conditions. K

Table 1 and References on page 16 
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0
0.0030
0.0011
0.0011
0.0006
0.0006

mgub(βj) =

0.0440
0.0252
0.0128
0.0128
0.0102
0.0102

0.044
0.03
0.01
0.01
0.01
0.01

mg (11)=U = k uc(βj) = 

0.0220
0.0126
0.0064
0.0064
0.0051
0.0051

mguc(βj) =

( )
×  2 = 0.0041 mg

d / 2

3
ud = AB

AB
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Weights: 1 kg 500 g 200 g 200* g 100 g Σ 100 g

umr · hj mg 0.022 0.011 0.0044 0.0044 0.0022 0.0022

Vr · hj cm3 127.7398 63.8699 25.5480 25.5480 12.7740 12.7740

uVr · hj cm3 0.0012 0.0006 0.0002 0.0002 0.0001 0.0001

Vj cm3 - 62.428 24.975 24.976 12.485 12.506

uVj cm3 - 0.014 0.004 0.004 0.002 0.001

ρa mg/cm3 1.196

uρa mg/cm3 0.002

(Vj–Vr hj)uρa mg - 2.9 ⋅ 10-3 1.15 ⋅ 10-3 1.15 ⋅ 10-3 5.8 ⋅ 10-4 5.4 ⋅ 10-4

(ρa–ρo)(u2
Vj+u2

Vr)
1/2 mg - 5.6 ⋅ 10-5 1.61 ⋅ 10-5 1.61 ⋅ 10-5 8 ⋅ 10-6 4.3 ⋅ 10-6

ub mg - 0.003 0.0011 0.0011 0.0006 0.0005

ud mg 0.004

uA mg 0.0035 0.0022 0.0022 0.0022 0.0022

uc mg 0.022 0.0126 0.0064 0.0064 0.0051 0.0051

k 2

U mg 0.04 0.03 0.01 0.01 0.01 0.01

Table 1 Uncertainty budget for the first decade


