
The very important problem of finding the best fit line to
interpret the readings of any calibrated equipment was
addressed in the October 1998 issue of the OIML Bulletin
by Dr. Subasinghe, who proposed a way to improve the
calculation of uncertainties in such cases. The author of
this paper would like to put forward a different approach
which eliminates the obstacles encountered since the
outset by using the least normal squares, a method which
naturally allows the inversion of the independent and
dependent variables, thus making it possible to calculate
uncertainties using the known equations without having
to make any simplifying assumptions. Although the
equations derived here are known, the author has devised
a simple way of his own to obtain them, which he believes
makes the statistical properties associated with such a fit
more evident. A practical application using the same GUM
data as presented in the October 1998 Bulletin is also
presented and discussed.

Introduction

In metrology, a very important case of a linear fit
appears in the equipment calibration process, by using a
given standard. A plot of the readings made by the
equipment versus that obtained using the standard
should give a straight line fit if the instrument is
working properly, as Dr. Subasinghe points out in his
paper. [1]

Although the author shares Dr. Subasinghe’s main
view that in the case of a plot of the equipment reading
versus the reference equipment reading what is
important is to find the uncertainty associated with a
predicted x-value corresponding to a given y-value, he
believes that rather than proposing a new way to
approximate such uncertainty (equation 6 of his paper)
the solution lies in finding a way to obtain the slope and
intercept of the fit in such a way that, since the start,
they fulfill the requirement of inversion.

In other words, rather than using the standard
method known as Ordinary Least Square (OLS), and its
result mxy = r2 / myx (where r = the Pearson correlation
coefficient), the Least Normal Squares (LNS) method
should be used from the outset since it naturally leads to
inversion, giving as a result mxy = 1 / myx. (Caution: this
is by no means to be taken as the special case r = 1.) This
approach allows the user to solve the inversion problem
without having to resort to the standard techniques of
calculating uncertainties.

Ordinary least square (OLS) fit

The standard technique of the ordinary least square fit
can be found in any introductory text, but for the sake of
being comprehensive and to allow the reader to
compare methods, it is outlined here.

Let (xi , yi) be a set of N ordered pairs, obtained
experimentally. The values on the x-axis are supposed to
have a negligible uncertainty. The best fit line will be
characterized by that (m,b) which makes

S(m,b) = Σ (yi – mxi – b)2 

a minimum, which leads to:

where yi and xi denote the readings on the equipment
needing corrections and those of the reference equip-
ment, respectively. X and Y are the centroid of such a set
of data points.

The suffix xy denotes that the variable x is con-
sidered to have been measured with negligible error,
whereas the y variable not. For the case when all the
errors have been lumped in the x variable the labels are
inverted, and the following equations result:
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Least normal squares (LNS)

The different approach the author would like to present
here is derived from a single tenet: the requirement that
the dispersion Σ v´ i

2 (defined in the text below) be a
minimum.

We start by shifting all the data values yi and xi by
their respective centroid values, defining two new
variables (u,v) such that ui = xi – X , vi = yi – Y. It is
straightforward to show that U = 0, V = 0. Regardless of
how the slope and intercept are calculated the best fit
line has to pass through the centroid. 

If the data shows a visible tendency to lie along a
line, most of the data points can be encompassed by an
imaginary ellipse, which suggests that the coordinates
(u,v) should be rotated around the point (X,Y) by an
angle α in a direction such that the variable u-axis will
be practically parallel to the major semi-axis of the
ellipse, which leads to: 

u´= v sinα + u cosα v´ = v cosα – u sinα

The value of α to be used will be that which makes
the ellipse minor semi-axis a minimum. In the limiting
case where all the points lie exactly on a line, the minor
semi-axis will be exactly zero.

It is only natural to equate the dispersion of the u´
points to the value of the major semi-axis. The fact that
the minor semi-axis is perpendicular to this axis is
another way of saying that we are considering the
distance from each point to the fit line as the value of a
line segment starting from the point and ending in the
fit line, when such a segment is perpendicular to the fit
line.

Analysis in the (U´,V´) plane

The requirement that Σ v´2 = Σ(v cosα – u sinα)2 = Σ cos2α
(v – u tanα)2 be a minimum is the equivalent of making
S(m,b) a minimum with respect to m. The intercept b is
in this case equal to zero, as can be seen from the
proposed v = u tanα relation.

In Anderson’s paper [2], the angle between the line
and the u-axis is taken as a parameter, but for other
reasons (namely that the angle parameter transforms
linearly whereas the m certainly does not). In the
discussion that followed this article, P. Sprent states: “…
there is a third idea that is unusual: that of considering
the angle of inclination of a line to one of the axes rather
than the tangent of that angle. I am not clear whether
there are many practical advantages in looking at the
angle rather than the slope” ([2], p. 20). This is an
opinion the author of the present paper does not share.

It is apparent that:

du´ = v´ , dv´= –u´, 
dα dα

from which the requirement of the dispersion Σ v´2 being
a minimum transforms to:

In other words, creation of the (u´, v´) plane is
equivalent to making both new variables independent of
each other, i.e. have zero correlation.

In [2] P. Sprent minimized U = Σ (x cosϕ + y sinϕ – p)2

obtaining Σ[(y – Y) – β(x – X)][x + βy] = 0. He drew
attention to the fact that in Williams [3] two new
variables u = [(y – Y) – β(x – X)] v = [x + βy] are defined
leading to Σ uv = 0 and so “the estimation of the slope β
is equivalent to choosing β so that the sample correla-
tion of (u,v) is zero” ([3] p.21).

Taking the derivative again, and forcing the
dispersion of v´ to be a minimum one finds
– (Σ v´2 – Σ u´2) > 0 which is another way of saying a > b,
as it should be with the major and minor semi-axis. If
instead one minimizes the dispersion of u´ , one finds
that the assignment of signs is reversed, obtaining b > a
opposite to our convention.

Analysis of (U,V) plane

Hence, for coherence we are forced to assign the major
semi-axis to the dispersion of the u´ and the minor semi-
axis to the dispersion of v´, from which:

The expressions using ∆ are identical to equations (7)
in Creasy [4].

We will denominate by ϕ the value of α, that
minimizes b, or maximizes a, since both requirements
are fulfilled simultaneously for the same angle,
constituting further evidence of the coherence of this
approach. This explains quite simply the result that the
likelihood of the surface showing a saddle point rather
than the absolute minimum as found out by Solari [6]. 

The above leads to:
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One can use this last equation to calculate the value
of the slope tan ϕ by first finding ϕ and taking its tangent
afterwards. However care has to be taken not to forget
that there are two different possible values of ϕ (in the
range – π< ϕ < π) for each value of tan 2ϕ. Such behavior
is more clearly seen if the value of tan ϕ is directly
obtained.

Using the facts that tan 2α = 2 tanα / (1 – tan2α) and
that we constructed the best fit line to be roughly
parallel to the ellipse major semi-axis, we are allowed to
identify tanα with the slope m, and hence find:

where we have set Bxy= 1
2 { (σy /σ x) – (σx /σ y) }. Notation

reminds us that the first index for m refers to the
independent variable, and the second to the dependent
one. 

Madansky [6] wrote: “One should note, though, that
some of the papers referred to in Lindley [7] and Zucker
[8] derive the least squares estimate of tan 2θ, where
β = tanθ, when λ = 1, …, but do not solve for β using the
relation: tan 2α = 2 tanα / (1 – tan2α)”.

And he continues: “Pearson [9] was one who
estimated tan 2θ but he argued that the best-fitting
straight line for the system of points coincides in
direction with the major axis of the correlation ellipse.
But the direction of the major axis of the correlation
ellipse depends only on sgn (Σ xy). In none of the other
papers do I find such an argument.”

There are two possible values for mxy depending on
the sign used, which we will call mxy+ and mxy- .
Multiplication of both values gives – 1 as a result,
showing that they refer to two mutually perpendicular
lines. Our convention forces us to assign the + sign to
that parallel to the major semi-axis, leaving the – sign to
that parallel to the minor semi-axis. Madansky [6]
presents a very concise analysis of the use of the two
signs.

Should we perform this analysis setting Σ u´2 to be a
minimum, then:

This implies that tanα is now the negative of the
inverse of the previous tanα, which in turn corresponds
to the second root.

We can also start from a2 > b2 , Σ u´2 > Σ v´2 finding:

Hence, if Σ uv > 0 we have to choose sin 2α > 0 which
is fulfilled for 0 < α < 12 π, which is what we obtain if (x,y)
are directly related. Similarly, if Σ uv < 0 we have to
choose sin 2α < 0 which is fulfilled for 12 π< α < π, which
is what we obtain if (x,y) are inversely related. These
results are coherent with the fact that with OLS method
one finds tanα = Σ vu / Σ u2 making it evident that the
sign of Σ vu determines whether the data is directly or
else inversely related.

The expressions for a2 and b2 represent a circle off-
centered by 12 (σy

2 + σx
2) in each axis, with a radius equal

to 2R as given by equation (4) of Creasy [4], who uses
this result to examine the confidence limits for the slope.
The reader is referred to the original paperfor details. 

Relation to OLS

Let us write:

Using tan 2α = 2 tanα / (1 – tan2α) as a guide, one
may be tempted to make the association tanα = Σ vu / Σ u2,
the result obtained when using the OLS method. But
then one also has to take:

Such is the basis of Kendall’s [10] equations (29.21)
obtained by imposing certain conditions on the
estimators. But from the above it can be seen that such
an association can not be made, because it does not
solve the quadratic equation. In fact equation (29.22) is
basically r2 = 1 which does not necessarily follow on
from the first association.

Applying the approximation tan β ≅ β when β is small
one finds that tan 2ϕ ≅ 2 (Σ vu / Σ u2) which implies that
if the slope is small, the value obtained from the OLS
and that obtained from the LNS will be basically the
same (as expected) because in the OLS method one uses
the differences in the y values which will now be
practically perpendicular to the would be best fit line, as
required by the LNS.
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Calculation of the intercept

We obtained the value of the slope, but the intercept is
still to be found. In the OLS case this is easily found
from Σ (yi – m xi – b) = Y – m X – b = 0 which proves the
assertion that the best fit line passes through the
centroid.

For the LNS case we can use the equation for the
slope to also find the value of b. Let us suppose that a
new measurement (xN+1 , yN+1 ) is made. The new average
will equal the old one:

if and only if xN+1 = X and similarly for variable y. In the
(u,v) plane the new data point is (0,0), i.e. the centroid.
Because of the form of the tan 2ϕ equation, its value
does not change. Hence, the centroid has to lie on the
best fit line, and Y = m X – b is also valid in the LNS
approach.

Inversion

Basic to our claim is that the results can naturally be
inverted, i.e. if we start with Y = mxy X + bxy or else we
start with X = myx Y + byx we will always have 
mxy * myx = 1. Exchanging x and y in the definition of the
slope, it can be directly proved that Bxy = – Byx , and that:

The sign in front of the square root sign has to be the
same in both cases, because all we did was to exchange
x and y. Care has to be exercised not to confuse myx with
the second root obtained from tan 2ϕ.

This result can also be obtained if one realizes that
for a y vs x plot the slope mxy is tanϕ, whereas for an
x vs y plot the slope myx will be tan (π/2 – ϕ) = cotϕ

Comparison of both methods

At this point a question arises: why switch from OLS to
the alternative method presented here?

Using the same data presented in [1] for Observed
temperature vs Reference temperature (Graph 2b:

Calibration plot) (See Table 1), Dr. Subasinghe reports a
linear relationship of:

y = 0.9978x + 0.2145

whereas using the method described here it is found
that:

y = 1.00245 x + 0.104

Although in this case the difference in the values of
the slope is small, application of this method to other
sets of data shows a more noticeable contrast. Moreover,
from the epistemological point of view a method that
makes no difference between which of the two variables
is the dependent one and gives a single value for the
slope is more satisfactory that one that forces the
experimenter to make such a decision from personal
considerations. K
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The author welcomes feedback to this article and 
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