
Summary

In this paper the calibration of weighing instruments
and the uncertainty associated with the calibration
results are investigated. The main questions dealt with
are:

• In order to judge the calibration results, assume that
the user of an instrument has given maximum tolerable
errors (MTE’s) for the instrument with different loads.
With their aid: 

- the person performing the calibration can decide
how accurately to read the indications;

- he/she can choose weights of sufficient accuracy
for the calibration; and

- if the errors of the instrument observed in the
calibration are within the MTE’s, the probability
that the “true” values of the errors are within the
MTEs can be given. 

• The relationship between the uncertainty of calibra-
tion and its components are investigated.

• Besides the uncertainty of calibration, the uncertainty
of practical weighing is outlined. 

1 Introduction

This paper deals with the calibration of weighing instru-
ments and the uncertainty of calibration and an attempt
is made to arrive at an uncertainty which can be
associated with the results of practical weighing. This is
the uncertainty of weighing.

The weighing instruments considered here are non-
automatic, single-interval instruments. 

The test procedures used in the calibration and in
the evaluation of the uncertainty are based on those
given in OIML Recommendation R 76-1 Nonautomatic
weighing instruments. Part 1: Metrological and technical

requirements - Tests, 1992. (The references here are to
OIML R 76-1 but they could as well be to the European
Standard: EN 45501, AC:1993). 

The evaluation of the uncertainty is based on the
Guide to the expression of uncertainty in measurement
(GUM), BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML,
Corrected & reprinted edition, 1995.

In Section 2 the calibration and the measures to be
taken in connection with the calibration are dealt with.
In Section 3 the uncertainty, its nature, practical mean-
ing and suitable values are considered. In Section 4 the
formula of the uncertainty of calibration and its com-
ponents are investigated. In Section 5 examples of the
application of the formula are given. In Section 6 the
uncertainty of weighing is outlined. 

2 Calibration of weighing instruments

2.1 What does calibration signify?

According to the definition of calibration in the Interna-
tional Vocabulary of Basic and General Terms in Metro-
logy (VIM), BIPM, IEC, IFCC, ISO, IUPAC, IUPAP,
OIML, 1993, the calibration of a weighing instrument
can be interpreted as being the determination of the
errors in the indication of the instrument at different
test loads (standard weights). The error is the difference
between the indication and the value of the corres-
ponding test load (the “true” value of the indication).

2.2 Weighing test 

For the purpose of this paper a transcription of the
“Weighing test” in OIML R 76-1, A.4.4.1 is presented. 

2.2.1 Checks 

Before the weighing test, check the leveling and ensure
that electrically powered instruments have been
switched on for a period of at least 0.5 h and have
reached temperature stability. Preload the instrument to
a “large” load and check the function of the instrument.
Unload and allow the instrument to recover before the
weighing test.

2.2.2 Test

Set the indication to zero at no-load. Apply test loads
(standard weights, see 2.3.4) from zero up to Max of the
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instrument (Max = the maximum weighing capacity)
and similarly remove the test loads back to zero. At least
five test loads are used. The indication is read at each
load. 

The first test load should be applied centrally to the
load receptor and the subsequent loads should be
uniformly distributed on the load receptor around its
midpoint. 

This is the calibration test (the comparison of the
measured values with the “true” values). The results can
be presented by a graph with the load on the abscissa
axis and the error of the instrument (2.1) on the ordinate
axis. This graph is the “weighing curve”.

2.3 Measures to be taken in connection with
calibration

2.3.1 Maximum tolerable errors (MTEs) and f

Suppose that the user of the instrument has selected an
error f. With its aid he can define the “maximum
tolerable errors”, MTEs, of the instrument (compare f
with e in OIML R 76-1, 3.5). For example, the MTEs can
be:

• ±1 f for all the loads, or
• ±0.5 f for certain “small” loads but ±1 f for larger

loads, or 
• ±0.5 f for “small” loads, ±1 f for certain “medium”

loads and ±1.5 f for larger loads. 

Instead of 0.5 f, 1 f and 1.5 f the values 1 f, 2 f and 3 f
can be used analogously. 

2.3.2 Digital rounding errors and f 

A) Indication with a scale interval d smaller than f 

With the aid of f one can decide whether or not the
digital rounding errors included in digital indications
should be eliminated. Without any special measures, the
rounding errors are deemed to be eliminated if 

f ≥ n d   (n ≥ 5)

where d is the scale interval of the instrument (OIML
R 76-1, T.3.2.2). 

B) Changeover point 

Otherwise, the so-called changeover point (obtained
after adding successive weights of 0.1 d or 0.2 d) is used
to determine the “accurate” indication such as is given
in OIML R 76-1, A.4.4.3. (The zero indication is dealt
with in this way, too (see also 4.5.2 B). The errors
recorded in the calibration should be corrected for the
error at zero obtained at the start of the weighing test).

2.3.3 Errors of net values

Let us deal with the case where a tare load is placed on
the instrument and a tare device is used to set the
indication to zero. Thereafter, weighings are performed
with the net loads. In order to estimate the errors of the
net values we use the weighing curve obtained in the
calibration of the instrument. This is done as described
below.
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Figure 1 The (>) branch of the weighing curve is obtained with increasing loads and the (<) branch with decreasing loads. 
When a tare load is on the instrument a subtractive tare device (reducing the weighing range for the net loads) is 
used to set the indication to zero “0”.



Let “0” be the zero indication after operation of the
tare device. Plot “0” on the weighing curve so that it
corresponds to the tare load (see Figure 1). Draw new
coordinates through this zero point “0”. From the
weighing curve the errors of the net values are obtained
in the new coordinates. 

2.3.4 Standard weights and notes on calibration 

A) Selection of weights 

For the weighing test the standard weights are selected
as follows (OIML R 76-1, 3.7.1).

Verified weights

The sum of the absolute values of the maximum
permissible errors (mpe’s) of the weights (≤ 50 kg) shall
not be greater than 1/3 of the MTE  of the instrument
for the applied load. 

Weights ≥ 50 kg, such as 500 kg and 1000 kg, are
selected so that Max/f of the instrument is less than or
equal to the n marked on the weights.

Calibrated weights

If the indications of the instrument are not corrected for
the errors of the weights, the sum of the absolute values
of the errors of the weights shall not be greater than 1/3
of the MTE  of the instrument for the applied load.

If the indications of the instrument are corrected for
the errors of the weights, the sum of the absolute values
of the uncertainties of the weights shall not be greater
than 1/3 of the MTE  of the instrument for the applied
load.

Preferably 1/5 should be used instead of 1/3 above
(see 4.2.2, Note 1).

B) Notes on calibration

The calibration should take place at the site where the
instrument is used.

If the instrument is to be repaired, serviced or its
span adjusted, then before these operations, the
development of the properties of the instrument should
be inspected by performing the weighing test and the
test described in 4.5.1. The results should be docu-
mented. After the repair, etc. the instrument can be
calibrated. 

3 Uncertainty of calibration, its nature,
practical meaning and evaluation

3.1 “True” E and value of uncertainty 

For a certain load let the error (2.1) of the instrument be
E and the value of the uncertainty of calibration U. It
shall be such that the interval E ± U covers the “true”
value of E with a “high” confidence. The “true” value of
E is here called the “true” E. 

One might think that the larger U is the more
confidence could be gained. If U is enlarged deliberately,
U can have a “large” confidence, say, “ >1 ”. However,
from the point of view of the measurements the
information included in U can even be very poor. On the
other hand, if U is rigorously evaluated according to the
GUM, U has a confidence < 1. It is large enough, and the
information is as good as possible. Let us say, U has a
physical meaning.

3.2 Nature of uncertainty

The uncertainty of calibration of a weighing instrument
consists of different components such as the properties
of the instrument and the errors of the standard weights
used in the calibration. The components are never com-
pletely known. So the uncertainty, which depends on the
components, is not completely known either. This means
that the value of the uncertainty is a realization of a
random variable and hence its value cannot be pre-
determined.

3.3 Practical meaning of uncertainty 

3.3.1 Relationship between  E ≤≤  MTE and 
 “true” E ≤≤  MTE

Let us restrict ourselves to the case where the absolute
values of the errors E obtained in the calibration are
within the MTE’s 

 E ≤  MTE

for all the loads. The question is: how well the condition
 “true” E ≤  MTE can be estimated from  E ≤  MTE
when U takes on different values?

A) U ≤ 1/3 x  MTE

If  E ≤ 2/3 x  MTE and U ≤ 1/3 x  MTE , then insert-
ing these values of  E and U in E ± U (which includes
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the “true” E) it is easy to see that  “true” E ≤  MTE is
true. 

In general, if  E ≤  MTE and U≤ 1/3 x  MTE , the
probability P that the condition  “true” E| ≤  MTE  is
true is approximated by the fraction  MTE / ( MTE
+1/3 x  MTE ). Now  MTE is half the length of the
interval where the “true” E should be and  MTE + 1/3
x  MTE that where it is. If U < 1/3 x  MTE , P is greater
than the fraction and if U =1/3 x  MTE , P equals the
fraction. So

P ≥  MTE / ( MTE + 1/3 x  MTE ) =  MTE / (4/3 x
 MTE ) = 75 %

B) U <  MTE

U = k x  MTE (k < 1). Such as in A) the probability P
that the condition  “true” E ≤  MTE is true is 

P =  MTE / ( MTE + k x  MTE ) = 1 / (1 + k) > 50 %
(k < 1)

Example: Let the observed E be E= + 0.4 x MTE . If 
k = 0.9, then the “true” E is in the interval E ± 0.9 x  MTE
(its length is 1.8 x  MTE ). In order for the condition
 “true” E ≤  MTE to be true, the “true” E should be in
the interval from – 0.5 x  MTE to  MTE the length of
which is 1.5 x  MTE (– 0.5 x  MTE = 0.4 x  MTE – 0.9
x  MTE ). Thus P = 1.5 x  MTE / (1.8 x  MTE ) ≈ 83 %.

C) U ≥  MTE

U = k x  MTE (k ≥ 1). The probability P that the
condition  “true” E ≤  MTE is true is 

P =  MTE / ( MTE + k x  MTE ) = 1 / (1 + k) ≤ 50 %
(k ≥ 1)

3.3.2 “Suitable” values of U

Here values of U <  MTE are regarded as suitable, i.e.,
a probability P > 50 % that the condition  “true” E ≤
 MTE is true is preferred. Values of U ≤ 1/3 x  MTE
are ideal but may sometimes be difficult to achieve (see
4.2.2, Note 1).

If U ≥  MTE , there is a need to take measures to
reduce U. It is possible if the instrument is giving service
and if errors such as the repeatability and the eccentric
errors (4.2 and 4.5.1) of the instrument can be made as
small as possible. An alternative is if the values of the
 MTE ’s can be increased.

3.4 Methods of evaluation of uncertainty 

3.4.1 Method in principle

The presentation of this method serves as an intro-
duction to the evaluation of the uncertainty.

Imagine that the calibration (the weighing test) is
repeated at least five times, each time applying the
standard weights to the load receptor so as to produce
centric and several kinds of eccentric loading. To
simplify the presentation the ambient temperature is
supposed to be unchanged during the tests. For each
load the standard deviation s and the variance s2 of the
errors obtained in the successive tests are calculated.
For each different load the variance of the errors of the
weights u2 is combined with the corresponding value of
s2 respectively (u2 is calculated as described in 4.4 but
now for each load separately). The uncertainty is 
U = 2(s2 + u2)1/2.

3.4.2 Practical method 

In this method, which is described in Section 4 below,
the calibration (the weighing test) is performed only
once and the different uncertainty components are
investigated. With their aid the uncertainty, which is the
“tool” for judging the calibration results, is evaluated. 

In order to investigate the uncertainty components,
different tests are performed, e.g., the repeatability test
where several weighings are carried out with the same
load, and the eccentricity test where weighings are made
with the same load in different positions on the load
receptor. The results of these tests are the differences
between the results of the weighings. They do not show
how they relate to some “true” values. Thus the results
are test results and not calibration results. 

4 Relationship between uncertainty of
calibration and its components

Here the relationship is given in formula (A) for U and
(B) for U1. 

The terms in U are related to: 

1) the repeatability of the instrument, 
2) the rounding errors involved in digital indication if

these are not eliminated (2.3.2), 
3) the errors in the standard weights used in the weigh-

ing test, 
4) the errors brought about by possible eccentric

positioning of the weights in the weighing test, 
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5) variations in the zero point, and 
6) the effect of temperature variations during the

weighing test. 

The terms in U1 are related to those given above and
to 7a) variations in the indication due to influences such
as vibration and disturbances during the weighing test
and 7b) irregularities in the weighing curve. 

The uncertainty components are 1) to 7b). The com-
ponents 1), 2) and 3) are the main ones which always
have an influence on U except 2) where rounding errors
are eliminated. Components 4), 5) and 6) have a real
effect on U only if they are powerful enough. Their
combined effect is here denoted by the symbol z. The
components 7a) and 7b) are denoted by the common
symbol w. 

The relationship between U (the uncertainty, w = 0)
and its components is:

(A) U = 2r [( kn R)2 + 1/r2 (0.3 d)2 + u2 + z2 ]1/2

The relationship between U1 (the uncertainty, w ≠ 0)
and its components is: 

(B) U1= 2r [( kn R)2 + 1/r2 (0.3 d)2 + u2 + z2 + 
1/r2 w2 ]1/2 = [U2 + 4 w2]1/2

2 r, kn, R, d, u, z and w are explained below in points
4.1 to 4.6 (see also Section 5). U is dealt with in 4.1 to
4.6.1 and U1 in Table 1 (4.1) and in more detail in 4.6.2.

4.1 Coefficient 2 r and Table 1

2 is the coverage factor (GUM). With its aid the values of
U meet the condition of the “high confidence” given at
the beginning of 3.1. 

r is for nonautomatic single-interval instruments. It
assumes the values r = 1, 0.7, 0.4 and 0.3 which are
determined on the basis of consideration. How r is used
is presented below and in Table 1.

Meaning of r

Imagine that the weighing range 0 – Max is divided into parts 1 to 3
in which the MTE’s (2.3.1) assume different values, e.g., ±0.5 f, ±1 f
and ±1.5 f. Each part is associated with a value of r. If there is only
one part (MTE = ±1 f for all loads), then r = 1. If there are two or three
parts, r = 1 for the part with the largest loads and r < 1 for the others.
The smaller the loads are in the parts the smaller the values r
assumes. 

Each part associated with a value of r is also associated with a
value of U. For the part with r = 1 let the value of U be Ur =1. Therefore,
the terms in U are determined with some “large” loads and the values
of the terms and r = 1 are used to evaluate Ur =1. For smaller loads the
values of U are evaluated with the same values of the terms as above
but with a value for r < 1 obtained from Table 1 (see next page).

4.2 Term knR brought about by repeatability R

4.2.1 R and standard deviation knR

The repeatability R is the difference between the largest
and the smallest results of the weighings in the repeat-
ability test (4.2.2). The standard deviation of all the
results is knR where n (n ≥ 3) is the number of the weigh-
ings and kn the coefficient which assumes the following
values: 

k3 = 0.591, k4 = 0.486, k5 = 0.430, k6 = 0.395, k7 = 0.370,
k8 = 0.350, k9 = 0.337 and k10 = 0.325.

Motivation

The values of kn are adopted from tables giving parameters of the
distribution of the range of samples taken from a normal population
(range = the difference between the largest and the smallest
observation). The repeatability R is deemed to originate from that
population, too. Such a table can be found in: Hald. A ,“Statistical
Tables and Formulas” Willey & Sons, Inc., New York, London, 1952,
Table VIII. 

4.2.2 Repeatability test 

The “large” test load LR is LR ≥ 0.5 x Max. At least five
weighings should be performed with LR in an identical
manner. (Suppose that kn indicates the quality of
information obtained from the repeatability test. It is
quite stable if n ≥ 5 (see the values of kn )). According to
OIML R 76-1, A.4.10, the instrument is set to zero before
each weighing or the automatic zero-tracking device
shall be in operation (in this case the procedure in 2.3.2
B is not applied to digital zero indications). 

The rounding errors included in digital indication of
the weighings with LR should be eliminated. If this is not
done and if the result R = 0 is obtained, it should be
replaced by R = d (the worst case). However, this value
of R can result in values of U, which are too large (see
3.1 to 3.3).

Note 1

A) Suppose that the MTE’s take on the values ±0.5 f and ±1 f. If 1)
R meets the condition R ≤ 0.35 f and 2) the weights for the weighing
test are chosen so that 1/5 is used instead of 1/3 (2.3.4 A) and 3) the
other uncertainty components are insignificant, then U ≤ 1/3 x
 MTE .

B) If the MTE’s take on the values ± 0.5 f, ±1 f and ±1.5 f and if
R < 0.55 f and 2) and 3) above are met, then U ≤ 1/3 x  MTE .
However, if the weights are chosen so that 1/3 is used, R should be
R < 0.4 f and 3) above should be met in order that U ≤ 1/3 x  MTE .
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Note 2

With the aid of R, variations in some other quantities which have
influence on U can be taken into account. Examples are the variations
in the hysteresis and that given in 4.6.1. In order to explain the
variations in the hysteresis imagine that the weighing test is repeated
under the same conditions. It is likely that the location of the
weighing curve of each weighing test is slightly different. For a certain
load the changes of the locations will indicate the variations in the
hysteresis. It should be emphasized that the hysteresis as such cannot
be regarded as an uncertainty component but the variations in it can.
However, they can be included in R for all the loads so that with the
aid of R the variations in the hysteresis can be taken into account
without any other measures.

4.3 Term 0.3 d brought about by digital 
rounding errors

d is the scale interval. If the rounding errors in the
digital indications noted in the weighing test are
eliminated (2.3.2), set (0.3 d)2 = 0. Otherwise 0.3 d,
which is the standard deviation of the digital rounding
errors, is used to calculate U.
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Table 1  Evaluation of U or U1 for different loads. Single-interval instruments 

Suppose that w = 0. For some “large” loads (4.2 to 4.5) determine a value of knR, u and z (d is the scale interval) in U. These values and r
obtained according to the MTE’s (Table) are inserted in Formula (A) for U. In this way the values of U (w = 0) can be evaluated for loads at
which the MTE’s takes on different values. 

Suppose that w ≠ 0 for some adjacent loads. For these loads the value of U (w = 0) is corrected for w ≠ 0. The corrected value of U equals
the value of U1 = [U 2 + 4 w2] 1/2 (Formula B). More information on w and U1 is given in 4.6.2, Figure 2 and Table 2. If w is w ≠ 0 for almost
all the loads in the weighing range either U or U1 is evaluated as described in 4.6.1.



How to obtain 0.3 d

The digital rounding errors are in the interval (–0.5 d,
+0.5 d) or more exactly in the intervals kd ± 0.5 d, 
k = 0,1,2,…, n; n = Max/d, i.e., in the n + 1 intervals 
(–0.5 d, +0.5 d) around the points kd, k = 0, 1, 2, …, n.
The distribution of the rounding errors is uniform (they
have the uniform, rectangular distribution). Their
standard deviation is 0.5 d/√3 ≈ 0.3 d. 

In the formula for U the coefficient of (0.3 d)2 is 1/ r2

because the effect of the rounding errors is to be kept
unchanged when operating with r. 

4.4 Term u brought about by weights 

u is the standard deviation of the errors of the weights for
a “large” load LRw. It corresponds to the load LR used in
the repeatability test. The weights in LRw can be
regarded as a representative sample drawn from the
weights used in the weighing test. u assumes different
values as given below in points 4.4.1 to 4.4.3.

4.4.1 Verified weights

u = 0.4 x (the sum W of the absolute values of the mpe’s
(2.3.4 A) of the weights in LRw)

Motivation

All the verified weights are here supposed to be adjusted so that their
errors are within the limits ± 2/3 xmpe . So the actual error of the
weights in LRw can be estimated as being in the interval
[–2/3 W, +2/3 W]. The error is uniformly distributed in 
[–2/3 W, +2/3 W]. (If there are several weights in LRw , they may have
both positive and negative errors and their sum, the actual error of the
weights, can be quite “small”. In this case the interval [–2/3 W, +2/3 W]
could be an upper estimate of the intervals where the actual error can be
found). The standard deviation of the actual error of the weights is 
u = 2/3 W/√3 ≈ 0.4 W.

4.4.2 Calibrated weights

A) Two or more weights are used in LRw and the indica-
tions of the instrument are not corrected for the
errors of the weights

u = 0.6 x (the sum W of the absolute values of the
errors of the weights in LRw ) 

Motivation

The actual error of the weights in LRw is estimated to be in the interval
[–W, +W]. The distribution of the error is of the discrete type. In this

case where two or more weights are used in LRw the distribution is
approximated by the (continuous) uniform distribution. Thus the
standard deviation of the error of the weights is u = W/√3 ≈ 0.6 W. 

B) Only one weight is used in LRw and the indications of
the instrument are not corrected for the errors of the
weights

u = (the absolute value w of the error of the weight
in LRw )

Motivation

The error of the weight is either –w or +w. Their standard deviation u
is (their mean is 0 and frequency of appearance 0.5) u = [0.5 (+w – 0)2

+ 0.5 (–w –0)2]1/2 = w.

C) The indications of the instrument are corrected for
the errors of the weights

u = 0.5 x (the sum of the absolute values of the
uncertainties of the weights in LRw)

Motivation

The uncertainty of a weight multiplied by 0.5 is a standard deviation.
Let us call it the “standard deviation of the weight”. The sum of the
absolute values of the uncertainties of several weights multiplied by
0.5 is an upper limit of the joint standard deviation of the
corresponding weights. 

4.4.3 Effect of air density on weights

If the calibration results of the instruments with 
Max/f > 50 000 (frequently d ≤ 1 mg) are obtained at
different ambient air densities ρ (kg/m3) which differ
from the reference density 1.2 kg/m3, the results should
be corrected for the effect of the air density on the
weights. 

After the correction the calibration results are
equivalent to those which would have been obtained if
the air density were 1.2 kg/m3. The formula for the effect
is given in “Motivation” below. Here the corresponding
effect on the load receptor and on the load measuring
device is not considered.

The uncertainty component due to the correction is
(m/8000)2 sρ

2. It is added to u2. So in the formula for U,
u2 is replaced by 

u2 + (m/8000)2sρ
2

where u is that given in 4.4.1 or 4.4.2 and m/8000 sρ is the
standard deviation of the correction of the effect of the air
density on the weights, m (kg) is the mass of the weights
in LRw and sρ (kg/m3) the standard deviation due to the
variations of the air density ρ during the weighing test.
8000 kg/m3 is the standard reference density of the
weights. 
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To obtain ρ the air pressure, the ambient temper-
ature and the relative humidity have to be measured. If
the error of the air pressure measured is ± 10 mbar or
± 50 mbar, the value of sρ is approximately 0.01 kg/m3 or
0.04 kg/m3 respectively. At sites where instruments with
Max/f > 50 000 are usually used, the variations of the
temperature and the relative humidity can influence the
third or successive decimal places in the numerical
value of sρ. 

Motivation

According to Archimedes’ Principle the effect of the air density on the
weights is obtained from the formula: (1.2 – ρ) m/8000 (kg). From it
m/8000 sρ is derived.

4.5 Term z brought about by three kinds of errors 

The term z includes the following errors: ∆1, ∆2 and γ LR
∆t. ∆1 is brought about by eccentric loadings, ∆2 by the
variations in the zero point and γ LR ∆t by the temper-
ature variations ∆t during the weighing test

z2 = (0.4 ∆1)
2 + 1/r2 (0.2 ∆2)

2 + (0.2 γ LR ∆t)2

4.5.1 Largest eccentric error ∆∆1

A) Eccentricity test, ∆1 and standard deviation 0.4 ∆1

In order to estimate the effect of the weights applied
more or less to eccentric positions on the load receptor
during the weighing test, the results of the eccentricity
test are used here. In this test the same “large” test load
(see B below) is successively applied to the eccentric
positions (given in OIML R 76-1, A.4.7) and to the middle
position of the load receptor. The differences between
any indication at the eccentric positions and that at the
middle position are determined. The absolute value of
the largest difference is ∆1. 

If ∆1 is smaller than  MTE (∆1 <  MTE ) of the
instrument for the load used in the eccentricity test, set 
(0.4 ∆∆1)

2 = 0..  Otherwise, ∆1 is used to calculate z2. 0.4 ∆1
is the standard deviation of the eccentric effect of the
weights during the weighing test (see C and D below). 

B) Test load and corrections 

For instruments having not more than four (n ≤ 4)
points of support (load cells) the test load is 1/3 x Max.
If n > 4, the test load is 1/(n – 1) x Max (OIML R 76-1,
A.4.7). 

All the indications observed in the eccentricity test
should be corrected for the error at zero. This should be
determined every time just before the test load is applied
to the different positions (WELMEC 2, Directive
90/384/EEC: Common Application, 4.5). This is
necessary for instruments with Max / f > 10 000. If the
accuracy of the zero-setting is ≤ 0.25 f, the indication of
instruments with Max / f ≤ 10 000 can be set to zero
before the test load is applied. In addition, the rounding
errors included in digital indications should be
eliminated. 

C) How to obtain 0.4 ∆1

In order to obtain 0.4 ∆1 imagine n + 1 weighings. The
first n weighings are performed with the load LR (4.2.2)
at the middle position and the last weighing with the
same load but applied to an eccentric position on the
load receptor. Except for the position of the load for the
last weighing, the weighings are performed as in the
repeatability test. The joint variance of the results of the
weighings is 

1/n  (n – 1)s2 + [n/(n + 1)] (x’ – m)2

where m is the arithmetic mean of the results of the first
n weighings, s ≈ knR (4.2.1) their standard deviation and
x’ is the result of the last weighing. The components of
the joint variance are: 

1) [(n – 1)/n] s2 ≈ [(n – 1)/n] (kn R)2 

due to the repeatability and 

2) [1/(n + 1)] (x’ – m)2

due to the eccentric loading. 

During the weighing test the weights are applied to
the load receptor as in 2.2.2. The magnitude of the effect
of the error brought about by the eccentric positions of
the weights can be described by the distance from the
center of gravity of the weights to the midpoint of the
load receptor. The shorter the distance is the smaller the
eccentric effect for a given load. Usually the distance is
quite short.

If the load LR (≥ 0.5 x Max) in the last weighing above
is placed halfway between the midpoint of the load
receptor and the position where ∆1 is obtained in the
eccentricity test, |x’ – m| (component 2) above) can
approximately take on the value ∆1 (note that in the
eccentricity test ∆1 is obtained with a load which is
“much” smaller than LR). If |x’ – m| ≈ ∆1 and n = 5, then
according to 2) [1/(n + 1)] (x’ – m) 2 ≈ [1/(n + 1)] ∆1

2 ≈
(0.4 ∆1)

2. If the load LR were placed anywhere else on the
halfway point between the midpoint of the load receptor
and the positions used in the eccentricity test, |x’ – m|
could take on a value smaller than ∆1 or it could even be
zero. 
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D) Effect of (0.4 ∆1)
2

If the result ∆1 of the eccentricity test assumes a “large”
value (≥ MTE ) for the applied load, then (0.4 ∆1)

2

could have a significant effect on U, i.e., the results of
the weighing test are “highly” dependent on the
positions of the weights on the load receptor. On the
other hand, if ∆1 assumes a “small” value (< MTE ), the
results of the weighing test are almost independent of
the positions of the weights and thus, one could say that
the effect of (0.4 ∆1)

2 on U is negligible. 

4.5.2 Difference ∆∆2 between zero points

A) ∆2 and standard deviation 0.2∆2

∆2 is the absolute value of the difference between the
zero indications at the start and at the end of the
weighing test. If ∆2 is smaller than  MTE (∆2 <  MTE )
for the zero point, set (0.2 ∆∆2)

2 = 0. Otherwise ∆2 is used
to calculate z2. The standard deviation of the variations
in the zero point during the weighing test is approxi-
mated here with the aid of 0.2 ∆2.

Motivation

Assume that ∆2 consists of the hysteresis and the variations in the zero
point. The width of the range of the “pure” variations (without the
hysteresis and momentary variations in the zero point ) is guessed to
be 0.7 ∆2 Assuming that the variations in the zero point are inde-
pendent and uniformly distributed over 0.7∆2, the standard deviation
of the variations is roughly 0.5 x 0.7 ∆2 /√3 ≈ 0.2∆2.

The coefficient 1/ r2 of (0.2 ∆2)
2 in z2 is to keep (0.2 ∆2)

2 un-
changed when operating with r. 

B) Determination of ∆2 when zero-tracking 
is in operation

If the zero-tracking device is in operation, then with a
“small” load which is out of the automatic range of the
zero-tracking the indication is noted, and its error is
defined to be the error at zero (OIML R 76-1, A.4.2.3.2).
This is used to determine ∆2 in connection with the
weighing test. 

4.5.3 Temperature effect and error γγ LR ∆∆t

A) γ LR ∆t and standard deviation 0.2 γ LR ∆ t

In γ LR ∆t the symbol ∆t denotes the difference between
the extreme temperatures during the weighing test. LR is

the load for the repeatability test (4.2.2) and γ a coeffi-
cient so that γ LR ∆t is the error of the instrument due to
∆t for the “large” load LR.

If ∆t meets the conditions for steady ambient temp-
erature*), set (0.2 γγ LR ∆∆t)2 = 0. Otherwise, 0.2 γ LR ∆t is
used to calculate z2 taking into account the restrictions
in B) below. 0.2 γ LR ∆t is the standard deviation of the
error of the instrument for the load LR caused by ∆t.

How to obtain 0.2 γ LR ∆ t

0.2 γ LR ∆t is derived by regarding γ ∆t as a sum of independent
“impulses” γ ∆t =∑ γ ∆tk (k=1, 2, … , n). Because n can be regarded as
a large number, suppose that the conditions of the Central Limit
Theorem (see textbooks of statistics) are met for γ ∆t and thus it is
approximately normally distributed. Then the standard deviation of
γ ∆t is 1/6 x γ ∆t ≈ 0.2 γ ∆t (the “observed” sum of the impulses is from
zero to γ ∆t). 0.2 γ LR ∆t is obtained by multiplying 0.2 γ ∆ t by LR .

B) ∆ t exceeds limits for steady ambient temperature

If ∆t exceeds the limits for the steady ambient temper-
ature*) and if the test has lasted, say, for more than 0.5 h,
0.2 γ LR ∆t is deemed to have a significant effect on z2

and thus on U. (A weighing instrument using electric
power is a heat dissipating device with a housing. The
effect of the changes of the ambient temperature on the
instrument cannot be regarded as significant until after
a sufficient delay). 

4.6 Term w due to variations in indication and
irregularities in weighing curve

4.6.1 Variations in indication and irregularities in
weighing curve for several loads

The variations can be brought about by influences such as vibration,
draughts, strongly oscillating ambient temperature and electrical
disturbances. During the variations an unambiguous reading of the
indication may not be possible and thus the variations can have an
influence on the uncertainty.

The irregularities in the weighing curve can be due to automatic
corrections of properties of the instrument. Due to the irregularities
the weighing curve may have a zigzag form and the points of the
curve (the errors of the instrument) can be difficult to determine
accurately enough. Thus, the irregularities could be a source of the
uncertainty. 

17O I M L  B U L L E T I N V O L U M E X L I I  • N U M B E R 4  • O C T O B E R 2 0 0 1

t e c h n i q u e

*) According to OIML R 76-1, A.4.1.2, ∆t should be at most 5 °C for
instruments for industrial weighing (Max/f ≤ 10 000), 3 °C for
laboratory scales (high accuracy instruments, Max/f ≤ 100 000)
and 1 °C for instruments of special accuracy (Max/f unlimited).
The rate of change of ∆t must not be more that 5 °C /h.



Suppose that due to the variations/irregularities, the
repeatability R of the instrument is considerably
enlarged. In this case the effect of the variations/
irregularities on the uncertainty U can be obtained with
the aid of R without any other measures (see 4.2.2,
Note 2). In this case w is deemed to be w = 0 and the
values of U (w = 0) (Formula A) are determined. How-
ever, if the effect of the variations/irregularities is not
included in R, w ≠ 0 and the values of U1 (Formula B)
have to be determined for all the loads. The calculation
of w is explained in 4.6.2 

4.6.2 Variations in indication and irregularities in
weighing curve for certain loads only

A) Range ∆3 and standard deviation w = 0.3 ∆3 

If the variations in the indication or the irregularities in
the weighing curve are noted for some adjacent loads,
one range ∆3 of the variations or of the irregularities is
estimated for these loads. For example, if the variations
are within ±2d, then ∆3 = 4d, or if the difference between
the limits of the “oscillations” in the weighing curve is
∆3, then ∆3 is the range of the irregularities. In the case
mentioned at the end of 4.6.1, one value of ∆3 should be
estimated for the variations/irregularities for all the
loads. 

w = 0.3 ∆3 is the standard deviation of the variations/
irregularities. If ∆3 < 1/3 x  MTE , set w = 0. Otherwise,
if ∆3 ≥ 1/3 x  MTE , the uncertainty U (w = 0) should be
corrected for w ≠ 0 for the loads at which w exists. This
results in the uncertainty U1 (Formula B). The evalua-
tion of U1 is elucidated in more detail in Figure 2 and
Table 2.

Motivation

Suppose that the variations or the irregularities are uniformly
distributed over ∆3. Thus, their standard deviation is w = 0.5 x ∆3 /√3
≈0.3 ∆3. 

In the formula of U1 (Formula B) there is the coefficient 1/r2 of
w2. This is because w shall be kept unchanged when operating with r. 

B) Nature of U1

Frequently, the value of U1 is quite large due to w. For
the loads at which w exists it is not possible to perform
the calibration accurately enough. To some extent the
large values of U1 indicate inadequate protection of the
instrument against the influences and factors causing
variations and irregularities respectively. U1 is not
suitable for the investigations presented in 3.3. 

The user of the instrument should pay attention to
the existence of the variations or irregularities during
practical weighings. They have to be taken into account
in the uncertainty of weighing. This is briefly dealt with
in Section 6.

5 Use of U and examples

5.1 Use of U

The same value of U is associated with the two calibra-
tion results obtained for a certain load L. One is
obtained when the load L is reached by the increasing
and the other by the decreasing loads. This is also
adapted for use of U1, if applicable (see Table 2). In order
to judge the calibration results, U is used such as is
explained in Section 3. 
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Figure 2 The weighing range 0 – Max is divided into the parts A to B, B to C and C to D. For them the values of the  MTE ’s 0.5 f, 1 f 
and 1.5 f and the uncertainties U’’’, U’’ and U’ (w = 0) are given respectively. However, w ≠ 0 is w1 for loads from E to F and 
w2 from G to H. For these loads the values of the uncertainties U’’ and U’ should be corrected for w1 and w2 respectively, i.e., 
the values of U1 (Formula B) are determined. For loads from E to C, U1 = [U’’ 2 + 4w1 

2] 1/2 and from C to F, U1 = [U’ 2 + 4w1 
2]1/2.

For loads from G to H, U1 = [U’ 2 + 4 w2 
2] 1/2.



5.2 Examples

5.2.1 Example 1 

In this example the calibration of a vehicle instrument
with digital indication is dealt with. The instrument has
four load cells, its Max is 20 000 kg and d = 10 kg. 

The  MTE ’s for the instrument are f = 10 kg for
loads from 0 to ≤ 5 000 kg and 2 f = 20 kg for loads over
5 000 kg to Max. 

For the calibration nine verified weights of 2 000 kg,
one of 1 000 kg and two of 500 kg are used. They bear
the marking n = 3 000, i.e., their maximum permissible
errors (mpe’s) are ±340 g, ±170 g and ±85 g respectively.

A) Tests (Contrary to recommendations in 2.3.2 and
Section 4 all the following tests are performed without
eliminating the digital rounding errors)

Weighing test (2.2):
Both for increasing and decreasing loads the observed
errors E are 0 for loads from 0 to ≤ 5 000 kg and +10 kg
for the loads over 5 000 kg.

Repeatability test (4.2):
A vehicle of about 19 000 kg mass is used as the test load
LR. Six weighings are performed. Thus kn = k6 ≈ 0.4. The
observed result is R = 0 but according to 4.2.2
R = d = 10 kg has to be used. So k6 R = 4 kg.

Weights (4.4): 
For the load LRw = 19 000 kg the sum W of the absolute
values of the mpe’s of the weights is W = 9 x 340 g + 1 x
170 kg = 3 230 g. According to 4.4.1 u = 0.4 x 3230 g ≈
1.3 kg.

Eccentricity test (4.5.1), zero return (4.5.2) and
temperature effect (4.5.3): 
The eccentricity test is performed with a load 6 500 kg
(≈1/3 x Max). ∆1 = 10 kg (< 2f = 20 kg). ∆2 = 0 kg (< f =

10 kg) and the slow changes ∆t in the temperature were
about 2 °C during the weighing test. On this basis set
z2 = (0.4 ∆1)

2 + 1/r2 (0.2 ∆2)
2 + (0.2γ LR ∆t)2 = 0. 

During the weighing test variations in the indication
were not noted and thus w = 0 (4.6).

B) Evaluation of U (w = 0)

Denote z2 = 0. For loads from 0 to ≤ 5 000 kg the
uncertainty U is (Table 1, point 2, r = 0.4):

U = 2r [(kn R)2 + 1/r2 (0.3 d)2 + u2]1/2 = 2 x 0.4 x 
[42 + 1/0.42 (0.3 x 10)2 + 1.32]1/2 ≈ 7 kg

For the loads > 5 000 kg U is (Table 1, point 2, r = 1):

U = 2r [(kn R)2 + 1/r2 (0.3 d)2 + u2 ]1/2 = 2 x [42 +
(0.3 x 10)2 + 1.32]1/2 ≈ 10 kg

C) Conclusions

Loads from 0 to ≤ 5 000 kg,  MTE = 10 kg 
and U = 7 kg

The observed errors E are E = 0 but actually they are in
the range of –5 kg to +5 kg. The effect of this range is
taken into account by using the term (0.3 d)2 in U. 
E ± U = (0 ± 7 kg) and is within the MTEs for the loads
in question. So the values of the “true” E satisfy the
condition  “true” E ≤  MTE . The probability P (3.3.1)
is 100 %.

Loads > 5 000 kg,  MTE = 20 kg and U = 10 kg 

The observed errors E are E= +10 kg but actually they
are in the range of +5 kg to +15 kg. This is taken into
account by using the term (0.3 d)2 in U. 
E ± U = (10 ± 10 kg) and is within the MTEs for the loads
in question. So the values of the “true” E satisfy the
condition  “true” E ≤  MTE . The probability P is
100 %.
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Table 2 Summary of values of uncertainties in Figure 2 

Assume that w1 exists both for increasing (E to F) and for decreasing loads (F to E), but for loads from G to H w2 exists for decreasing 
loads (H to G) only.

* The uncertainty U1 = [U’2 + 4 w2
2]1/2 has to be associated with the calibration results which are obtained for decreasing loads 

H to G. For increasing loads G to H the uncertainty is U’ (see also 5.1).

Loads: A to B B to E E to C C to F F to G G to H H to D

Uncertainty: U’ ’ ’ U ’ ’ [U’ ’ 2 + 4w1
2]1/2 [U’2 + 4w1

2]1/2 U’ [U’2 + 4w2
2]1/2 * U’



5.2.2 Example 2

In this example the calibration of a laboratory scale
(high accuracy instrument) with digital indication is
dealt with. The instrument has one load cell, its Max is
12 000 g and d = 1 g. 

The  MTE for the instrument is f = 2 g for all the
loads from 0 to Max.

Verified weights 0.5 kg, 1 kg, 2 kg, 5 kg and 10 kg are
used. Their OIML accuracy class is M1.

A) Tests (According to the recommendations in 2.3.2 and
in Section 4 all the following tests are performed
eliminating the digital rounding errors)

Weighing test (2.2): 
Both for increasing and decreasing loads the observed
errors E are monotonically increasing from 0 to + 1.5 g
for the loads from 0 to Max respectively. 

Repeatability test (4.2): 
The 10 kg weight is used as the test load LR. Six weigh-
ings are made. R = 0.6 g and kn = k6 ≈ 0.4. Thus
k6 R = 0.24 g.

Weights (4.4): 
LRw = 10 kg. The mpe of the 10 kg weight is 500 mg.
Thus W = 500 mg. According to 4.4.1 u = 0.4 x 500 mg ≈
0.2 g. 

Eccentricity test (4.5.1), zero return (4.5.2) and
temperature effect (4.5.3): 
The eccentricity test is performed with a 4 kg load 
(= 1/3 x Max). Since ∆1 = 2 g (= f = 2 g) it is used to
calculate z2. ∆2 = 0.2 g (< f = 2 g) and the slow change ∆t
in the temperature was about 1 °C during the weighing
test. On this basis z2 = (0.4∆1)

2+ 1/r2(0.2∆2)
2+ (0.2γ LR∆t)2

= (0.4 ∆1)
2 = 0.82. 

During the weighing test no variations in the indica-
tion were noted and thus w = 0 (4.6). 

B) Evaluation of U (w = 0)

Denote (0.3 d)2 = 0. For all the loads from 0 to Max the
uncertainty U is (Table 1, point 3, r = 1):

U = 2r [(kn R)2 + u2 + z2]1/2 = 2 x [0.242 + 0.22 + 0.82]1/2 ≈
1.7 g 

C) Conclusions

The observed errors E are noted to be from 0 to + 1.5 g.
Thus E ± U can take on values from (0 ± 1.7) g to 
(1.5 ± 1.7) g. For the loads near zero, the value of the

positive “true” E is from 0 to 1.7 g, and at Max it is from
0 to 3.2 g. The positive “true” E should be in the interval
0 to 2 g. For the loads near zero P is P = 100 % but for
the Max load P is 2 g/3.2 g ≈ 62 % but increases as the
loads decrease.

However, if the eccentric error ∆1 were adjusted so
that ∆1 < 2 g, its effect could be neglected and the
uncertainty would be U = 2r [(kn R)2 + u2]1/2 = 
2 x [0.242 + 0.22]1/2 ≈ 0.6 g. Except for the Max load P is
now 100 %. 

6 Uncertainty of practical weighing 

Suppose that a calibrated instrument is used. The
uncertainty of its calibration results is now considered
to be one part of the uncertainty of practical weighing
with the instrument. 

Another part can be obtained by performing weigh-
ings with a large load in real weighing situations. Either
1) the weighings are made with the same large load
several times or 2) with different large loads the results
of which are checked with a control instrument. 

In case 1) calculate the variance s2 of the results the
number n of which is n ≥ 5. The variance s2 can also be
determined by means of the range of the results.
Therefore, choose kn according to 4.2.1 and calculate
s2 ≈ (kn x range)2. 

In case 2) calculate the variance v2 of the differences
between the results of the loads obtained with the
instrument in question and with the control instrument.
The number n of the loads weighed should be n ≥ 5. v2

can also be calculated with the aid of the range of the
differences. 

Both s2 and v2 are assumed to be large compared
with (knR)2 obtained in the repeatability test of the
instrument (4.2). 

The uncertainty of weighing is approximated by the
combination of the uncertainty of calibration and the
variance s2 or v2. The combination is: 

(U2 + 4 s2)1/2 or (U2 + 4 v2)1/2

where U (w = 0) is the uncertainty of calibration with
large loads for which r = 1 (4.1). For smaller loads the
uncertainty of weighing should be estimated in the same
way taking into account r < 1 in U for these loads. 

If w in 4.6.2 exists during the weighings, its value is
determined as explained in 4.6.2 and U1 = (U2 + 4 w2)1/2

is calculated. This U1 is used instead of U in the above
formulae of the uncertainty of weighing. Note that if w
is w ≠ 0 during the calibration neither it nor the
corresponding U1 for the calibration are used in the
uncertainty of weighing. K
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