
1 Introduction 

This paper deals with the verification of nonautomatic,
single interval weighing instruments from a statistical
point of view. 

On the basis of the verification test results obtained
for weighing instruments, the verification officer makes
the decision as to whether or not an instrument can be
verified. 

The test results are estimates, i.e. their values are
associated with uncertainties and due to them the
officer may make incorrect decisions. 

The aim of this paper is to investigate these decisions
and to make suggestions about how to avoid them. A
formula is given for the uncertainty of the errors in the
indication of the instrument observed in the weighing
test (R 76-1, A.4.4.1). It is used in the study of incorrect
decisions and also to judge some of the requirements
laid down for verification. 

In Section 2 a short note on the verification tests is
given. Sections 3 and 4 deal with incorrect decisions. In
Section 5 a formula for the uncertainty associated with
the results of the weighing test is presented.

2 Notes on verification tests 

The flow chart at the bottom of this page shows some of
the verification tests and checks for the instruments.

The test results in 2) must be within the MPEs, the
maximum permissible errors on initial verification
(R 76-1, 3.5), and the differences between the results of
the weighings in 3) must meet the permissible differ-
ences (R 76-1, 3.6). 

3 Uncertainty and a “quality” indicator 
for verification

3.1 “True” E 

For a certain load let E be the error of the instrument
obtained in the weighing test and U the value of the
uncertainty of that error. The interval E ± U covers the
“true” value of E with a “high” confidence level. The
“true” value of E is here called the “true” E. 

According to the requirements of R 76-1, 3.5 the
absolute value of the error E must satisfy the condition

 E  ≤  MPE
for all the loads. The question is, what is the probability
that 

 “true” E ≤  MPE
is true when 

 E ≤  MPE
is met and U takes on different values? 

3.2 Probability that ||“true” E || ≤≤ ||MPE || is true *)

Case 1: U ≤≤ 1/3 ××  MPE

If  E ≤ 2/3 × MPE and U ≤ 1/3 ×  MPE , then substi-
tuting these values for E and U in E ± U (which includes
the “true” E) it is easy to see that  “true” E ≤  MPE is
true. 
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In general, if  E ≤  MPE and U ≤ 1/3 ×  MPE , the
probability P that  “true” E ≤  MPE is true is approxi-
mated by the fraction 

 MPE / ( MPE + 1/3 ×  MPE ). 

Now  MPE is half the length of the interval where
the “true” E should be and 

 MPE + 1/3 ×  MPE

that where it is. If U < 1/3 ×  MPE , P is greater than the
fraction and if U = 1/3 ×  MPE , P equals the fraction.
So:

P ≥  MPE / ( MPE + 1/3 ×  MPE ) =
=  MPE / (4/3 ×  MPE ) = 75 %

Case 2: U <  MPE

U = k ×  MPE (k < 1). In a similar way as in Case 1 the
probability P that  “true” E ≤  MPE is true is:

P =  MPE / ( MPE + k ×  MPE ) =
= 1 / (1 + k) > 50 % (k < 1)

Example:

Let the observed E be 

E = + 0.4 ×  MPE . 

If k = 0.9, then the “true” E is in the interval 

E ± 0.9 ×  MPE (its length is 1.8 ×  MPE ). 

In order for the condition 

 “true” E  ≤  MPE

to be true, the “true” E should be in the interval 

from – 0.5 ×  MPE to  MPE

the length of which is 1.5 ×  MPE . Thus P = 1.5 ×  MPE
/ (1.8 ×  MPE ) ≈ 83 %.

Case 3: U ≥≥  MPE

U = k ×  MPE (k ≥ 1). The probability P that  “true” E
≤ MPE is true is:

P =  MPE / ( MPE + k ×  MPE ) =
= 1 / (1 + k) ≤ 50 % (k ≥ 1)

On the basis of the previous cases one can draw the
conclusion that the smaller the value U assumes, the
better the chances are that  “true” E ≤  MPE is true
when  E ≤  MPE . 

3.3 “Quality” indicator U 

If U <  MPE (P > 50 %), the quality of the verification
is here regarded as good enough. Obviously values of

U ≤ 1/3 ×  MPE (P ≥ 75 %) 

are ideal but may sometimes be difficult to achieve.
Practical conditions for U <  MPE are given in 5.3.2
and for U ≤ 1/3 ×  MPE in 5.3.3.

If U ≥  MPE (P ≤ 50 %), the values of U should be
reduced by having the instrument serviced and adjusted.
As stated in 5.3.2 the adjustment should primarily aim
to reduce the eccentric errors and the repeatability error,
if possible. The intention is: U <  MPE . 

4 Type I and II errors and OC-curves

4.1 Type I and II errors 

Consider “Type I” in Figure 1 where the observed E (3.1)
is E > +MPE. If the “true” E in the interval E ± U is “true”
E < +MPE, it complies with the requirements (a “good”
result). However, the observed E is E > +MPE and does
not comply with the requirements. Because E is the
basis for decision, a Type I error is committed (the
“good” result cannot accepted). 

Consider “Type II” in Figure 1 where E < +MPE. If
the “true” E in the interval E ± U is “true” E > +MPE, it
does not comply with the requirements (a “poor” result).
However, the observed E is E < +MPE and complies with
the requirements. Because E is the basis for decision, a
Type II error is committed (the “poor” result is
accepted). 

Type I and II errors can also be brought about by
some defects in the tests (Section 2). For example:

A) If in the eccentricity test the variations in the zero
point are not taken into account accurately enough
before the test load is applied to the different posi-
tions on the load receptor, then the results of the test
may be misleading and the decisions made on their
basis may be incorrect. 

B) Suppose that the errors of the indications obtained
in the weighing test vary in a non-linear way and that
they are within the MPEs. However, the errors of the
net values may exceed the MPEs. If in this case the
errors of the net values are not investigated as they
should be, an instrument not complying with the
requirements might be verified and a Type II error is
committed.
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4.2 OC-curves

In the following the effect of Type I and II errors is
illustrated with the aid of OC-curves (see textbooks
dealing with statistical quality control) showing the
probability that the instrument is verified. 

4.2.1 Ideal OC-curve

Let us deal with an imaginary case where E is within the
MPEs but U equals zero. Thus the observed E equals the
“true” E. It is thus possible to perform the verification
without the effect of Type I and II errors. This is
illustrated by the ideal OC-curve in Figure 2.

4.2.2 Actual OC-curve

In real situations the uncertainty associated with the
observed E differs from zero. When this E is used to
investigate whether or not the condition |E| ≤ |MPE| (3.1)
is met, incorrect decisions can be made due to Type I
and II errors as explained in 4.1. 

Consider Figure 3 where two example OC-curves are
shown. Their ordinates show the probability P that the
instrument is verified. Now let a Type I error mean that
a “good” instrument (all the “true” E values are within
the MPEs) is not verified and a Type II error that a
“poor” instrument (all the “true” E values are not within
the MPEs) is verified. 

In order to avoid these errors P should be as large as
possible when |“true” E | ≤ |MPE| and as small as possible
when |“true” E | > |MPE|. 

Curve a) in Figure 3

Type I errors may be committed because P < 1 for the
values of  “true” E which are just below  MPE . So
“good” instruments may sometimes not be verified. If
the  “true” E is “small” or near zero, then P ≈ 1 and
Type I errors can very likely be avoided. 

Type II errors can be committed because P > 0 for the
values of  “true” E which are slightly greater than
 MPE . So a “poor” instrument may be verified,
although in this case quite rarely. P decreases as
 “true” E increases and assumes zero if  “true” E is
great enough. So the chances of Type II errors gradually
decrease as “true” E increases. 
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Figure 1

“Type I”: Let the “true” E be < +MPE. Decisions are made according to the
observed E which is E > +MPE. So a Type I error is committed. 

“Type II”: Let the “true” E be > +MPE. Decisions are made according to the
observed error E which is E < +MPE. So a Type II error is
committed. 

Figure 2

If | “true” E| ≤  MPE  (U = 0), the probability P that the instrument 
is verified is 1. 

If | “true” E| >  MPE , the probability is 0.

Curve a) is considered to be a good fit to the step
curve (the ideal OC-curve). The fit is better the smaller
the values U assumes. On the other hand, the better the
fit the more unlikely Type I and Type II errors are.

Curve b) in Figure 3 

For the values of  “true” E which are slightly smaller
than  MPE , P assumes values zero. So Type I errors are
very likely and “good” instruments are in practice not
verified. However, if  “true” E is near zero, P ≈ 1 and
the very “good” instruments ( “true” E ≈ 0) can be
verified. 



kn R is the standard deviation of the results of the
repeatability test. kn assumes the following values
according to the number n (n ≥ 3) of results in the
test: 
k3 = 0.591, k4 = 0.486, k5 = 0.430, k6 = 0.395, 
k7 = 0.370, k8 = 0.350, k9 = 0.337, k10 = 0.325.

u is the standard deviation of the errors of the
verified weights used. u = 0.4 × (the sum of the
 mpe ’s of the weights for the load which corres-
ponds to the load used in the repeatability test).

∆ is the greatest eccentric error noted in the
eccentricity test (R 76-1, A.4.7). Frequently, the
test load is 1/3 ×  MPE of the instrument. If ∆ is
less than or equal to the smaller of  ∆ <  MPE or
 ∆ < e for the load used in the test, set ∆ = 0 in U.
In this case the errors in the weighing test can be
regarded as independent of the positions of the
weights on the load receptor. Otherwise, ∆ ≠ 0 and
0.4 ∆ is the standard deviation of the errors
brought about by the eccentric positions of the
weights on the load receptor during the weighing
test.

r is a coefficient and assumes the values 0.3, 0.4, 0.7
and 1 which are associated with the values of the
MPEs of the instrument as given in Table 1. r is
used to evaluate U for the loads where the MPEs
take on the different values ± 0.5 e, ± 1 e and
± 1.5 e or ± 0.5 e and ± 1 e or only ± 0.5 e. 

The formula for U can be used if: 

A) digital rounding errors included in digital indica-
tions are eliminated (R 76-1, 3.5.3.2), 

B) readings of the indications are unambiguous 
(R 76-1, 4.2.1), 

C) the verification is performed at a steady ambient
temperature (R 76-1, A.4.1.2), 

D) verified weights are used in the verification, and 

E) the buoyancy effect of the air density on weights
does not need to be taken into account (note that this
effect should also be considered on the load meas-
uring device (load cell) and the load receptor). 

5.2 Determination of U

The values of kn R, u and ∆ are determined as mentioned
in 5.1 and are inserted in the formula for U. Thereafter,
according to r (Table 1) the values of U are sequentially
evaluated for the loads where the MPEs take on the
different values. 

Type II errors are practically impossible and “poor”
instruments are not likely to be verified at all. This is
achieved at the expense of committing Type I errors. 

Curve b) could represent a situation where instead of
 E ≤  MPE the requirement  E ± U ≤  MPE is
applied to verification. The fit of curve b) to the step
curve is considered to be very poor.

5 Practical evaluation of the uncertainty 
and requirements 

5.1 Formula for U 

The uncertainty U associated with the errors E (3.1)
obtained in the weighing test is evaluated here with the
aid of the following formula for U:

U = 2r [(kn R)2 + u2 + (0.4 ∆)2 ]1/2

Where: *)

R is the repeatability, i.e., the difference between the
largest and the smallest results in the repeatability
test. The test load is the largest load used in the
test. Frequently, it is near Max (R 76-1. A.4.10). 
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*) Explanations of kn R, u, ∆ and r are presented in the author’s
paper “Calibration of Weighing Instruments and Uncertainty 
of Calibration”, OIML Bulletin, October 2001.

Figure 3

If |“true” E | ≤  MPE (U > 0), the probability P (curve a) that the instrument 
is verified is ≤ 1. Only if the values of |“true” E | are near zero, then P = 1. 

If |“true” E | >  MPE , P (curve a) is > 0 and cannot be 0 until the values of 
|“true” E| are great enough. The fit of curve a) to the step curve (the ideal 
OC-curve) is quite good but that of curve b) is not. 



The values of r associated with the values 
of the MPEs for the instrument. 

MPE: ±0.5 e ± 1 e ± 1.5 e

r: 0.3 0.7 1 

r: 0.4 1 -

r: 1 - -

For example, let the instrument be of class III and
Max/e = n = 2000. Thus the MPEs assume the values
± 0.5 e and ± 1 e. U is as follows: 

U = 2 × 0.4 × [(kn R)2 + u2 + (0.4 ∆)2 ]1/2

for the loads where 

MPE = ± 0.5 e (r = 0.4) 

U = 2 × [(kn R)2 + u2 + (0.4 ∆)2 ]1/2 for the loads where 

MPE = ± 1 e (r = 1). 

5.3 Requirements and values of U

5.3.1 Values of U expressed in terms of e 

Let us deal with instruments with MPEs which take on
the values ± 0.5 e and ± 1 e. 

According to the requirements of R 76-1 the values of
R, u and ∆ could be as follows:

- R can be at most e, if the test load is near Max. The
number of weighings is supposed to be six. So
k6 = 0.395 and k6 R ≈ 0.4 e (R 76-1, 3.6.1 and 8.3.3).

- In order to obtain u, calculate the sum of the  mpe ’s
of the weights Σ mpe for the test load used for R. So
according to u in 5.1 and R 76-1, 3.7.1, u = 0.4 ×
Σ  m p e  ≤ 0 . 4 × 1 / 3 ×  M P E  = 0 . 4 × 1 / 3 e
because MPE = e of the instrument for the load in
question. 

- The value of  ∆ can be at most e (R 76-1, 3.6.2).
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Insert these greatest values for kn R, u and ∆ in U.
Thus, the value of U for the loads for which MPE =
± 0.5 e (r = 0.4) is: 

U = 2r[(kn R)2 + u2 + (0.4 ∆)2]1/2 =

= 2 × 0.4 × [(0.4 e)2 + (0.4 × 1/3 e)2 + (0.4 e)2 ]1/2 =

= 2 × 0.4 × 0.58 e ≈ 0.46 e (U ≈  MPE )

The value of U for the loads for which 
MPE = ±1 e (r = 1) is: 

U = 2r[(kn R)2 + u2 + (0.4 ∆)2]1/2 = 

= 2 × [(0.4 e)2 + (0.4 × 1/3 e)2 + (0.4 e)2]1/2

= 2 × 0.58 e ≈ 1.2 e (U >  MPE )

In a similar way the values of U can be approximated
if the MPEs of the instrument assume the values ± 0.5 e,
± 1 e and ± 1.5 e or only ± 0.5 e.

5.3.2 Conditions for U <  MPE and suggestions for 
R, ∆ and errors of the weights

In order to arrive at values of U which are smaller than
 MPE (see 3.2 and 3.3), the following values are
suggested for R, ∆ and the errors of the weights:

- R should be R <  MPE or R < e for the applied test
load, whichever is smaller. The number n of weighings
in the repeatability test should be n ≥ 5 (the values of
kn (5.1) are quite stable for these values of n and thus
the information from the test could be good enough).

-  ∆ should be  ∆ <  MPE or  ∆ < e for the applied
test load, whichever is smaller. In this case set ∆ = 0 in
U.

- The weights for the weighing test should, if possible,
be selected so that their errors are not greater than 1/5
(instead of 1/3) of the  MPE of the instrument for the
applied load.

5.3.3 Conditions for U≤ 1/3 ×  MPE

If U should be U ≤ 1/3 ×  MPE and the MPEs assume
the values ± 0.5 e and ± 1 e, then R should be R ≤ 0.35 e
for the applied test load while ∆ is as given in 5.3.2. The
weights should preferably be selected so that their errors
are at most 1/5 (instead of 1/3) of the MPE for the
applied load. 

Table 1  Coefficient r



If U should be U ≤ 1/3 ×  MPE and the MPEs take
on the values ± 0.5 e, ± 1 e and ± 1.5 e, R should be
R < 0.55 for the applied test load, ∆ is as given in 5.3.2
and 1/5 should be used in the selection of the weights.
However, if the weights are selected using 1/3, R should
be R < 0.4 e for the applied test load while ∆ is as given
in 5.3.2. K
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