
1 Introduction

In accordance with the provisions of the European Co-
operation for Accreditation, the expanded uncertainty of
measurement in calibration should be expressed for a
coverage probability of approximately 95 % [1]. In cases
where a normal distribution can be attributed to the
measurand and the standard uncertainty associated
with the output estimate has sufficient reliability, the
standard coverage factor k = 2 shall be used. The assump-
tion of normal distribution cannot always be easily
confirmed. The standard coverage factor k = 2 can yield
an expanded uncertainty corresponding to a coverage
probability different to 95 %. The use of approximately
the same coverage probability is essential whenever two
results of measurement of the same quantity have to be
compared, e.g. when evaluating the results of an inter-
laboratory comparison or assessing compliance with a
specification. In these cases, in order to ensure that the
value of the expanded uncertainty is quoted correspond-
ing to the same coverage probability as in the normal
case, another method has to be employed.

In the reference publication EA-4/02 (supplement 2),
two approximation methods for coverage factor
calculation are proposed. One method relies on
approximation of the output quantity distribution by a
rectangular distribution in cases where a dominant
contribution in the budget is a quantity having a
rectangular distribution. In this situation the coverage
factor is k = 1.65 for a coverage probability of 95 %. The
second method relies on approximation of the output
quantity distribution by a trapezoidal distribution in
cases where dominant contributions in the budget are
two quantities having rectangular distributions. In this
situation the coverage factors are from k = 1.65 to k = 1.9
for a coverage probability of 95 %. The value of the
coverage factor depends on the ratio of the uncertainty
of the dominant contributions and is given by:

for 1 ≤ r ≤ 10 (1)

where:

p = coverage probability

= ratio of the dominant contributions

u1(y) i u2(y) = dominant uncertainty contributions

These methods do not solve the problem in the
general case where there are several contributions in the
budget with normal and rectangular distributions
having various standard uncertainties, but non-
dominant terms. In this situation the conditions of the
Central Limit Theorem are not met and it cannot be
assumed that the distribution of the output quantity is
normal. The output quantity distribution is the convolu-
tion of rectangular and normal distributions (R*N
distribution).

2 Approximation of the convolution of
rectangular and normal distributions 
by a symmetrical trapezoidal distribution

The coverage factor for a trapezoidal distribution given
by (1) can be presented as a function of ratio r, as in
Fig.1. It can be illustrated by the curve kT. If r is the ratio
of standard deviations of convolved rectangular and
normal distributions, it may show the curve kRN for the
distribution resulting from the R*N convolution on the
basis of the coverage factor value presented in Reference
[3]. The difference between values of coverage factors k
for the trapezoidal distribution and for the R*N distribu-
tion are small; its variability is presented in Fig. 2. The
curve in this Figure shows the difference of coverage
factors kT and kRN given by:

(2)

The deviation δT does not exceed ± 1.5 % for a
coverage probability of 95 %. This approximation can be
compared with the one resulting from the traditional
standpoint, in other words with the approximation of a
coverage factor for R*N distribution by a coverage
factor for normal distribution or for rectangular
distribution. This situation is presented in Fig. 3, which
represents the functions of coverage factor deviations
for R*N distribution approximated by normal
distribution (δN), by rectangular distribution (δR) and by
trapezoidal distribution (δT). The suitable functions are
formulated by:
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Fig. 1 Coverage factor functions for a coverage probability of 95 %
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Fig. 2 Function of deviation δT for a coverage probability of 95 %
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(3)

(4)

where:

kN = the coverage factor for a normal distribution
kR = the coverage factor for a rectangular distribution

The above consideration implies the conclusion that
the best accurate approximation of the R*N distribution
is a trapezoidal distribution in the range from r = 1 to
r = 10. It should be expected in other ranges of r that the
good approximation of the R*N distribution is a normal
distribution for r < 1 and a rectangular distribution for
r > 10.

3 Principle of approximation of the
distribution and of the coverage factor 
for output quantity in calibration

On the basis of Reference [3] the coverage factor given
by the R*N distribution for a coverage probability of
95 % can change in the range from k = 1.65 to k = 2
(exactly k = 1.96). Those extreme values correspond to
the coverage factor given by the rectangular distribution
and by the normal distribution. The other value of the
coverage factor corresponds to the “intermediary”
distribution between the rectangular and normal
distributions. 

Those “intermediary” distributions are the convolu-
tions of rectangular and normal distributions (R*N
distributions) with a different parameter r (ratio of the
standard deviation of the rectangular distribution to the
standard deviation of the normal distribution). From
Fig. 1 it can be noted that the curve kRN is close to the
curve kT in the range of r from 1 to 10. The trapezoidal
distribution is the convolution of two rectangular
distributions. This implies the conclusion that each
convolution of the rectangular and “intermediary”
distributions gives a k function close to the kRN and kT
functions. Therefore, using an approximation of the
convolution of the rectangular and “intermediary”
distributions by trapezoidal distribution involves the
error of approximation of the coverage factor for this
convolution not larger than for the cases where the
coverage factor kRN is approximated by the coverage
factor kT. The “intermediary” distribution may be the
convolution of several rectangular and normal
distributions. For instance the coverage factors at the
coverage probability of 95 %: 

• given by the convolution of three identical rectangular
distributions is k = 1.94 [2], 

• given by the convolution of two identical rectangular
distributions is k = 1.90, and 

• given by the convolution of the normal and rect-
angular distributions with equal standard deviations
is k = 1.92 [3].

On the basis of this analysis the following principle
of approximation of output quantity distribution can be
formulated: for the output quantity Y = c1X1 + ... + cNXN,
where all input quantities X1, ... , XN are independent
and the quantity Xi having a rectangular distribution
with the largest contribution ui(y) = ciu(xi) satisfies the
condition:

the best approximation of the output quantity distribu-
tion is a trapezoidal distribution or a rectangular
distribution, independently from the distributions of
other input quantities. In other cases the best approxima-
tion of output quantity distribution is a normal
distribution.

The following coverage factor formulae can be
deduced:

k = kN for  0 ≤ r < 1
k = kT for  1 ≤ r ≤ 10
k = kR for  r > 10

where:

(5)

ui(y) = the largest contribution of the input quantity
having a rectangular distribution

kN = coverage factor for a normal distribution
kT = coverage factor for a trapezoidal distribution
kR = coverage factor for a rectangular distribution

(6)

(7)

p = coverage probability

4 Summary

The method presented for approximating the coverage
factor of the convolution of rectangular and normal
distributions has been applied. The function of an
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Fig. 3 Functions of deviations δN, δT and δR for a coverage probability of 95 %

Fig. 4 Function of the error of the approximation method of the coverage factor in calibration
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approximation error of the method defined by the
formula is presented in Fig. 4:

(8)

The maximum value of the error for the full range of
r lies in the range ± 2 %. Therefore this value of error is
not larger than the value of error that occurs when the
approximation is made using the normal distribution
and consequently coverage factor k = 2 at a coverage
probability of 95 %.

The method presented for approximating the output
quantity distribution rendered possible an accurate
estimation of the coverage factor for many input
quantities having normal, rectangular and “inter-
mediary” distributions. The method presented ensures a
coverage probability of approximately 95 % for
expanded uncertainty evaluation in calibration. The
method may be applied in procedures for calculating the
uncertainty of measurement in calibration. K
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