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Foreword

In 1997 a Joint Committee for Guides in Metrol-
ogy (JCGM), chaired by the Director of the BIPM, was
created by the seven international organizations that
had originally in 1993 prepared the “Guide to the ex-
pression of uncertainty in measurement” (GUM) and the
“International vocabulary of basic and general terms in
metrology” (VIM). The JCGM assumed responsibility
for these two documents from the ISO Technical Advi-
sory Group 4 (TAG4).

The Joint Committee is formed by the BIPM with the
International Electrotechnical Commission (IEC), the
International Federation of Clinical Chemistry and Lab-
oratory Medicine (IFCC), the International Organiza-
tion for Standardization (ISO), the International Union
of Pure and Applied Chemistry (IUPAC), the Interna-
tional Union of Pure and Applied Physics (IUPAP),
and the International Organization of Legal Metrol-
ogy (OIML). A further organization joined these seven
international organizations, namely, the International
Laboratory Accreditation Cooperation (ILAC).

JCGM has two Working Groups. Working Group 1,
“Expression of uncertainty in measurement”, has the
task to promote the use of the GUM and to prepare
Supplements and other documents for its broad appli-
cation. Working Group 2, “Working Group on Interna-
tional vocabulary of basic and general terms in metrol-
ogy (VIM)”, has the task to revise and promote the use
of the VIM. For further information on the activity of
the JCGM, see www.bipm.org.

The JCGM intends to keep the GUM predominantly
unchanged, but publish corrections and modify clauses
where necessary. Supplements such as this one are in-
tended to give added value to the GUM by providing
guidance on aspects of uncertainty evaluation that are
not explicitly treated in the GUM. The guidance will,
however, be as consistent as possible with the general
probabilistic basis of the GUM.

The present Supplement 1 to the GUM has been pre-
pared by Working Group 1 of the JCGM, and has ben-
efited from detailed reviews undertaken by member or-
ganizations of the JCGM and National Metrology Insti-
tutes.

c© JCGM 2006— All rights reserved v
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Introduction

This Supplement to the “Guide to the expression of un-
certainty in measurement” (GUM) is concerned with
the propagation of probability distributions through a
mathematical model of measurement [GUM 3.1.6] as a
basis for the evaluation of uncertainty of measurement,
and its implementation by a Monte Carlo method. The
treatment applies to a model having any number of in-
put quantities, and a single output quantity.

NOTE Citations of the form [GUM 3.1.6] are to the indi-
cated (sub)clauses of the GUM.

The described Monte Carlo method is a practical alter-
native to the GUM uncertainty framework (below). It
has particular value when (a) linearization of the model
provides an inadeqate representation or (b) the proba-
bility density function (PDF) for the output quantity
departs appreciably from a Gaussian distribution or a
scaled and shifted t-distribution, e.g. due to marked
asymmetry. In case (a), the estimate of the output
quantity and the associated standard uncertainty pro-
vided by the GUM uncertainty framework might be un-
reliable. In case (b), unrealistic coverage intervals (a
generalization of “expanded uncertainty” in the GUM
uncertainty framework) might be the outcome.

NOTE The GUM provides an approach when linearization is
inadequate [GUM 5.1.2 note]. The approach has limitations,
however, relating to the use of only the leading non-linear
terms in the Taylor series expansion of the model, and be-
cause the distributions for the input quantities are regarded
as Gaussian.

The GUM [GUM 3.4.8] “. . . provides a framework for
assessing uncertainty . . . ”, which is based on the use
of the law of propagation of uncertainty [GUM 5]
and the characterization of the output quantity by
a Gaussian distribution or a scaled and shifted t-
distribution [GUM G.6.4, G.6.6]. Within that frame-
work, the law of propagation of uncertainty provides a
means for propagating uncertainties through the model.
Specifically, it evaluates the standard uncertainty asso-
ciated with an estimate of the output quantity, given
(a) best estimates of the input quantities, (b) the stan-
dard uncertainties associated with these estimates, and,
where appropriate, (c) degrees of freedom associated
with these standard uncertainties, and (d) any non-
zero covariances associated with pairs of these estimates.
Also within the framework, the PDF taken to charac-
terize the output quantity is used to provide a coverage
interval, for a stipulated coverage probability, for that
quantity.

NOTE Strictly, the GUM characterizes the variable (Y −
y)/u(y) by a t-distribution, where Y is the output quantity, y
an estimate of Y , and u(y) the standard uncertainty asso-
ciated with y [GUM G.3.1]. This characterization is also

used in this Supplement. (The GUM in fact refers to the
variable (y − Y )/u(y).)

The best estimates, standard uncertainties, covariances
and degrees of freedom summarize the information avail-
able concerning the input quantities. With the approach
considered here, the available information is encoded in
terms of PDFs for the input quantities. The approach
operates with these PDFs in order to determine the PDF
for the output quantity.

Whereas there are some limitations to the GUM un-
certainty framework, the propagation of distributions
will always provide a PDF for the output quantity that
is consistent with the PDFs for the input quantities.
This PDF for the output quantity describes the knowl-
edge of that quantity, based on the knowledge of the
input quantities, as described by the PDFs assigned to
them. Once the PDF for the output quantity is avail-
able, that quantity can be summarized by (a) its expec-
tation, taken as an estimate of the quantity, and (b) its
standard deviation, taken as the standard uncertainty
associated with the estimate. Further, the PDF can be
used to obtain a coverage interval, corresponding to a
stipulated coverage probability, for the output quantity.

The use of PDFs as described in this Supplement is gen-
erally consistent with the concepts of Bayesian statistics
underlying the GUM. The PDF for a quantity expresses
the state of knowledge about the quantity, i.e. it quan-
tifies the degree of belief about the values that can be
assigned to the quantity based on the available informa-
tion. The information usually consists of raw statistical
data, results of measurement or other relevant scientific
statements.

NOTE Such a PDF is not to be understood as a frequency
density.

In order to construct a PDF for a quantity, on the ba-
sis of a series of indications, Bayes’ theorem can be ap-
plied [25, 31]. When appropriate information is available
concerning systematic effects, the principle of maximum
entropy can be used to assign a suitable PDF [49, 54].

The propagation of distributions has wider application
than the GUM uncertainty framework. It works with
richer information than that conveyed by best estimates
and the associated standard uncertainties (and degrees
of freedom and covariances when appropriate).

An historical perspective is given in annex A.

vi c© JCGM 2006— All rights reserved
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Evaluation of measurement data — Supplement 1 to the
“Guide to the expression of uncertainty in measurement” —
Propagation of distributions using a Monte Carlo method

1 Scope

This Supplement provides a general numerical ap-
proach, consistent with the broad principles of
the GUM [GUM G.1.5], for carrying out the calcula-
tions required as part of an evaluation of measurement
uncertainty. The approach applies to arbitrary models
having a single output quantity where the input quanti-
ties are characterized by any specified PDFs, including
asymmetric PDFs [GUM G.5.3].

NOTE A second Supplement in preparation is concerned
with models having any number of output quantities.

This Supplement provides guidance on the evaluation of
measurement uncertainty in situations where the condi-
tions for the GUM uncertainty framework are not ful-
filled or it is unclear whether they are fulfilled. It can
also be used in circumstances where there are difficulties
in applying the GUM uncertainty framework, because of
the complexity of the model, for example. The guidance
is presented in a form suitable for computer implemen-
tation.

This Supplement can be used to provide (a representa-
tion of) the PDF for the output quantity from which
(a) an estimate of the output quantity, (b) the stan-
dard uncertainty associated with this estimate, and (c) a
coverage interval for that quantity, corresponding to a
specified coverage probability, can be obtained.

Given (i) the model relating the input quantities and
the output quantity and (ii) the PDFs characterizing
the input quantities, there is a unique PDF for the out-
put quantity. Generally, the latter PDF cannot be de-
termined analytically. Therefore, the objective of the
approach described here is to determine (a), (b), and (c)
above to a prescribed numerical tolerance.

NOTE The uniqueness of the PDF for the output quantity
depends on the model defining the output quantity uniquely
in terms of the input quantities. This Supplement does
not consider models that do not define the output quantity
uniquely (for example, involving the solution of a quadratic
equation, without specifying which root is to be taken).

For a prescribed coverage probability, this Supplement
can be used to provide any required coverage interval,
including the probabilistically symmetric coverage inter-
val and the shortest coverage interval.

Typical of the uncertainty evaluation problems to which

this Supplement can be applied include those in which

— one or more of the contributory uncertainties may
be large compared with the other uncertainties,

— the contributory uncertainties are not necessarily of
approximately the same magnitude [GUM G.2.2],

— it is difficult or inconvenient to provide the par-
tial derivatives of the model (or numerical approx-
imations to these partial derivatives), as needed by
the law of propagation of uncertainty (possibly with
higher-order terms) [GUM 5],

— the PDF for the output quantity is not a Gaussian
distribution or a scaled and shifted t-distribution,

— an estimate of the output quantity and the associ-
ated standard uncertainty are approximately of the
same magnitude, as for measurement near the limit
of detection [GUM G.2.1],

— the models have arbitrary degrees of non-linearity
or complexity, and

— the distributions for the input quantities are asym-
metric, e.g. when dealing with the magnitudes of
complex variables in electrical metrology.

This Supplement can be used in cases of doubt to check
whether the GUM uncertainty framework is applica-
ble. A validation procedure is provided for this pur-
pose. Thus, the considerable investment in the use of
the GUM is respected: the GUM uncertainty framework
remains the primary approach to uncertainty evaluation
in circumstances where it is demonstrably applicable.

Guidance is given on the manner in which the propa-
gation of distributions can be carried out avoiding un-
quantified approximations.

This Supplement applies to input quantities that are
(a) independent, where each such quantity is assigned
an appropriate PDF, and (b) not independent, i.e. when
some or all of these quantities are assigned a joint PDF.

This Supplement contains detailed examples to illus-
trate the guidance provided.

In most applications it is sufficient to report the mea-
surement uncertainty to one or perhaps two significant

c© JCGM 2006— All rights reserved 1
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decimal digits. The calculation should be carried out in
a way that gives reasonable assurance that in terms of
the information provided for the uncertainty evaluation
these decimal digits are correct. Guidance is given on
this aspect.

This document is a Supplement to the GUM and is to
be used in conjunction with it. Other approaches gener-
ally consistent with the GUM may alternatively be used.
The audience of this Supplement is that of the GUM.

2 Normative references

The following referenced documents are indispensable
for the application of this document.

BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML.
Guide to the expression of uncertainty in measure-
ment (GUM). ISBN 92-67-10188-9. International Or-
ganization for Standardization, Geneva, corrected and
reprinted 1995.

BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML.
International vocabulary of basic and general terms in
metrology (VIM). ISBN 92-67-01075-1, Second Edition.
International Organization for Standardization, Geneva,
1993.

3 Terms and definitions

3.1 For the purposes of this Supplement the defini-
tions of the GUM and the “International vocabulary of
basic and general terms in metrology” (VIM) apply un-
less otherwise indicated. Some of the most relevant defi-
nitions, adapted where necessary from these documents
(see subclause 4.3 note), are given below. Further defi-
nitions are given, including definitions taken or adapted
from other sources, that are especially important for this
Supplement.

3.2
probability distribution
〈random variable〉 function giving the probability that
a random variable takes any given value or belongs to a
given set of values

NOTE The probability on the whole set of values of the
random variable equals 1.

[Adapted from ISO 3534-1:1993, 1.3; GUM:1995, C.2.3]

NOTE 1 A probability distribution is termed univariate
when it relates to a single (scalar) random variable, and mul-
tivariate when it relates to a vector of random variables. A
multivariate probability distribution is also described as a

joint distribution.

NOTE 2 A probability distribution can take the form of a
distribution function or a probability density function.

3.3
distribution function
function giving, for every value ξ, the probability that
the random variable X be less than or equal to ξ

GX(ξ) = Pr(X ≤ ξ)

[Adapted from ISO 3534-1:1993, 1.4; GUM:1995, C.2.4]

3.4
probability density function
〈continuous random variable〉 derivative (when it exists)
of the distribution function

gX(ξ) = dGX(ξ)/dξ

NOTE gX(ξ) dξ is the “probability element”

gX(ξ) dξ = Pr(ξ < X < ξ + dξ).

[Adapted from ISO 3534-1:1993, 1.5; GUM:1995, C.2.5]

3.5
normal distribution
probability distribution of a continuous random vari-
able X having the probability density function

gX(ξ) =
1

σ
√

2π
exp

[
−1

2

(
ξ − µ

σ

)2
]

,

for −∞ < ξ < +∞

NOTE µ is the expectation and σ the standard deviation
of X.

[Adapted from ISO 3534-1:1993, 1.37; GUM:1995,
C.2.14]

NOTE The normal distribution is also known as a Gaussian
distribution.

3.6
t-distribution
probability distribution of a continuous random vari-
able X having the probability density function

gX(ξ) =
Γ((ν + 1)/2)√

πνΓ(ν/2)

(
1 +

ξ2

ν

)−(ν+1)/2

,

for−∞ < ξ < +∞, with parameter ν, a positive integer,
the degrees of freedom of the distribution, where

Γ(z) =
∫ ∞

0

tz−1e−tdt, z > 0,

is the gamma function

2 c© JCGM 2006— All rights reserved
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3.7
expectation
for a continuous random variable X characterized by
a PDF gX(ξ),

E(X) =
∫ ∞

−∞
ξgX(ξ) dξ

3.8
variance
for a continuous random variable X characterized by
a PDF gX(ξ),

V(X) =
∫ ∞

−∞
[ξ − E(X)]2gX(ξ) dξ

3.9
standard deviation
positive square root [V(X)]1/2 of the variance

3.10
moment
for a continuous random variable X characterized by
a PDF gX(ξ), the rth moment

E(Xr) =
∫ ∞

−∞
ξrgX(ξ) dξ

NOTE The expectation E(X) is the first moment. The
variance V(X) can be expressed in terms of the first and
second moments.

3.11
covariance
for two continuous random variables X1 and X2 char-
acterized by a joint PDF gX(ξ), where X = (X1, X2)T

and ξ = (ξ1, ξ2)T,

Cov(X1, X2) =∫ ∞

−∞

∫ ∞

−∞
[ξ1 − E(X1)][ξ2 − E(X2)]gX(ξ) dξ1 dξ2

3.12
uncertainty matrix
square matrix of dimension equal to that of an esti-
mate of a vector quantity, containing on its diagonal the
squares of the standard uncertainties associated with the
individual estimates and in its off-diagonal positions the
covariances associated with pairs of individual estimates

NOTE 1 An uncertainty matrix Ux of order N associated
with the vector estimate x of a vector quantity X has the
representation

Ux =

 u(x1, x1) · · · u(x1, xN )
...

. . .
...

u(xN , x1) · · · u(xN , xN )

 ,

where u(xi, xi) = u2(xi) is the variance (squared standard
uncertainty) associated with xi and u(xi, xj) is the covari-
ance associated with xi and xj . u(xi, xj) = 0 if elements Xi

and Xj of X are uncorrelated.

NOTE 2 Covariances are also known as mutual uncertain-
ties.

NOTE 3 An uncertainty matrix is also known as a covari-
ance matrix or variance-covariance matrix.

3.13
coverage interval
interval containing the value of a quantity with a stated
probability

NOTE 1 A coverage interval is sometimes known as a cred-
ible interval or a Bayesian interval.

NOTE 2 Generally there is more than one coverage inter-
val.

3.14
coverage probability
probability associated with a coverage interval

NOTE The coverage probability is sometimes termed “level
of confidence” [GUM 6.2.2].

3.15
length of a coverage interval
largest value minus smallest value in a coverage interval

3.16
probabilistically symmetric coverage interval
coverage interval for a quantity such that the probability
that the quantity is less than the smallest value in the
interval is equal to the probability that the quantity is
greater than the largest value in the interval

3.17
shortest coverage interval
coverage interval for a quantity having shortest length
among all coverage intervals for that quantity having
the same coverage probability

3.18
propagation of distributions
method used to determine the probability distribution
for an output quantity from the probability distributions
assigned to the input quantities on which the output
quantity depends

NOTE The method may be analytical or numerical, exact
or approximate.

3.19
GUM uncertainty framework
application of the law of propagation of uncertainty
and the characterization of the output quantity by

c© JCGM 2006— All rights reserved 3
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a Gaussian distribution or a scaled and shifted t-
distribution in order to provide a coverage interval

3.20
Monte Carlo method
method for the propagation of distributions by perform-
ing random sampling from probability distributions

3.21
numerical tolerance
semi-width of the shortest interval containing all num-
bers that can be expressed to a specified number of sig-
nificant decimal digits

EXAMPLE All numbers greater than 1.75 and less than 1.85
can be expressed to two significant decimal digits as 1.8. The
numerical tolerance is (1.85− 1.75)/2 = 0.05.

NOTE For the calculation of numerical tolerance associated
with a numerical value, see subclause 7.9.2.

4 Conventions and notation

4.1 For the purposes of this Supplement the following
conventions and notation are followed.

4.2 A mathematical model of a measure-
ment [GUM 4.1] of a single (scalar) quantity can
be expressed as a functional relationship f :

Y = f(X), (1)

where Y is a scalar output quantity and X represents
the N input quantities (X1, . . . , XN )T. Each Xi is re-
garded as a random variable with possible values ξi and
expectation xi. Y is a random variable with possible
values η and expectation y.

NOTE 1 The same symbol is used for a physical quan-
tity and the random variable that represents that quantity
(cf. [GUM 4.1.1 note 1]).

NOTE 2 Superscript T denotes “transpose”. Thus, XT

represents X1, . . . , XN arranged as a row vector, whereas X
represents X1, . . . , XN arranged as a column vector.

4.3 This Supplement departs from the symbols often
used for “PDF” and “distribution function” [22]. The
GUM uses the generic symbol f to refer to a model and
a PDF. Little confusion arises in the GUM as a conse-
quence of this usage. The situation in this Supplement is
different. The concepts of model, PDF, and distribution
function are central to following and implementing the
guidance provided. Therefore, in place of the symbols f
and F to denote a PDF and a distribution function,
respectively, the symbols g and G are used. These sym-
bols are indexed appropriately to denote the quantity
concerned. The symbol f is reserved for the model.

NOTE The definitions in clause 3 that relate to PDFs and
distributions are adapted accordingly.

4.4 In this Supplement, a PDF is assigned to a quan-
tity X, which may be a single, scalar quantity or a vector
quantity. In the scalar case, the PDF for X is denoted
by gX(ξ), where ξ is a variable describing the possible
values of X. This X is considered as a random vari-
able with expectation E(X) and variance V(X) (sub-
clauses 3.7, 3.8).

4.5 In the vector case, the PDF for X is denoted
by gX(ξ), where ξ = (ξ1, . . . , ξN )T is a vector variable
describing the possible values of the vector quantity X.
This X is considered as a random vector variable with
(vector) expectation E(X) and covariance matrix V(X).

4.6 A PDF for more than one input quantity is often
called joint even if all the input quantities are indepen-
dent.

4.7 When the elements Xi of X are independent,
the PDF for Xi is denoted by gXi

(ξi).

4.8 The PDF for Y is denoted by gY (η) and the
distribution function for Y by GY (η).

4.9 In the body of this Supplement, a quantity is
generally denoted by an upper case letter and the ex-
pectation of the quantity or an estimate of the quantity
by the corresponding lower case letter. For example, the
expectation or an estimate of a quantity Y would be de-
noted by y. Such a notation is largely inappropriate
for physical quantities, because of the established use of
specific symbols, e.g. T for temperature and t for time.
Therefore, in some of the examples (clause 9), a differ-
ent notation is used. There, a quantity is denoted by its
conventional symbol and its expectation or an estimate
of it by that symbol hatted. For instance, the quan-
tity representing the deviation of the length at 20 ◦C
of a gauge block being calibrated from nominal length
(subclause 9.5) is denoted by δL and an estimate of δL

by δL̂.

NOTE A hatted symbol is used in the statistical literature
to denote an estimate.

4.10 In this Supplement, the term “law of propaga-
tion of uncertainty” applies to the use of a first-order
Taylor series approximation to the model. The term
is qualified accordingly when a higher-order approxima-
tion is used.

4.11 The subscript “c” [GUM 5.1.1] for the combined
standard uncertainty is redundant in this Supplement.
The standard uncertainty associated with an estimate y
of an output quantity Y can therefore be written as u(y),
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but the use of uc(y) remains acceptable if it is helpful to
emphasize the fact that it represents a combined stan-
dard uncertainty. The qualifier “combined” in this con-
text is also regarded as superfluous and may be omitted:
the presence of “y” in “u(y)” already indicates the esti-
mate with which the standard uncertainty is associated.
Moreover, when the results of one or more uncertainty
evaluations become inputs to a subsequent uncertainty
evaluation, the use of the subscript “c” and the qualifier
“combined” are then inappropriate.

4.12 The terms “coverage interval” and “cover-
age probability” are used throughout this Supplement.
The GUM uses the term “level of confidence” as a
synonym for coverage probability, drawing a distinc-
tion between “level of confidence” and “confidence
level” [GUM 6.2.2], because the latter has a specific
definition in statistics. Since, in some languages, the
translation from English of these two terms yields the
same expression, the use of these terms is avoided here.

4.13 According to Resolution 10 of the 22nd CGPM
(2003) “ . . . the symbol for the decimal marker shall be
either the point on the line or the comma on the line
. . . ”. The JCGM has decided to adopt, in its documents
in English, the point on the line.

4.14 Unless otherwise qualified, numbers are ex-
pressed in a manner that indicates the number of mean-
ingful significant decimal digits.

EXAMPLE The numbers 0.060, 0.60, 6.0 and 60 are ex-
pressed to two significant decimal digits. The numbers 0.06,
0.6, 6 and 6 × 101 are expressed to one significant decimal
digit. It would be incorrect to express 6 × 101 as 60, since
two significant decimal digits would be implied.

4.15 Some symbols have more than one meaning in
this Supplement. The context clarifies the usage. A
glossary of principal symbols is provided as annex G.

4.16 The following abbreviations are used in this
Supplement:

CGPM Conférence Générale des Poids et Mesures
IEEE Institute of Electrical and Electronic Engi-

neers
GUF GUM uncertainty framework
JCGM Joint Committee for Guides in Metrology
GUM Guide to the expression of uncertainty in

measurement
MCM Monte Carlo method
PDF probability density function
VIM International vocabulary of basic and gen-

eral terms in metrology

5 Basic principles

5.1 Main stages of uncertainty evaluation

5.1.1 The main stages of uncertainty evaluation con-
stitute formulation, propagation, and summarizing:

a) Formulation:

1) define the output quantity, the quantity in-
tended to be measured (the measurand);

2) determine the input quantities upon which the
output quantity depends;

3) develop a model relating the output quantity
to these input quantities;

4) on the basis of available knowledge as-
sign PDFs—Gaussian (normal), rectangular
(uniform), etc.—to the input quantities. As-
sign instead a joint PDF to those input quan-
tities that are not independent;

b) Propagation:

propagate the PDFs for the input quantities
through the model to obtain the PDF for the out-
put quantity;

c) Summarizing:

use the PDF for the output quantity to obtain

1) the expectation of that quantity, taken as an
estimate of the quantity,

2) the standard deviation of that quantity, taken
as the standard uncertainty associated with
the estimate [GUM E.3.2], and

3) a coverage interval containing the output quan-
tity with a specified probability (the coverage
probability).

NOTE 1 The expectation may not be appropriate for all
applications (cf. [GUM 4.1.4]).

NOTE 2 The quantities described by some distributions,
such as the Cauchy distribution, have no expectation or stan-
dard deviation. A coverage interval for the output quantity
can always be obtained, however.

5.1.2 The GUM uncertainty framework does not ex-
plicitly refer to the assignment of PDFs to the input
quantities. However [GUM 3.3.5], “. . . a Type A stan-
dard uncertainty is obtained from a probability density
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function . . . derived from an observed frequency distri-
bution . . . , while a Type B standard uncertainty is ob-
tained from an assumed probability density function
based on the degree of belief that an event will occur
. . . . Both approaches employ recognized interpretations
of probability.”

NOTE In some quarters there are some perceived incon-
sistencies in this technical use of probabilistic and statis-
tical concepts [19, 25]. Moreover, the degrees of freedom
associated with standard uncertainties are combined using
the Welch-Satterthwaite formula, which is based on classical
rather than Bayesian statistical principles [20].

5.1.3 The steps in the formulation stage are carried
out by the metrologist, perhaps with expert support.
Guidance on the assignment of PDFs (step 4) of stage a)
in subclause 5.1.1) is given in this Supplement for some
common cases (subclause 6.4). The propagation and
summarizing stages, b) and c), for which detailed guid-
ance is provided here, require no further metrological
information, and in principle can be carried out to any
required numerical tolerance for the problem specified
in the formulation stage.

NOTE 1 Advice on steps 1)–3) of the formulation stage a)
in subclause 5.1.1 will be provided in a further Supplement
to the GUM on modelling that is under development.

NOTE 2 Once the formulation stage a) in subclause 5.1.1
has been carried out, the PDF for the output quantity is
completely specified mathematically, but generally the cal-
culation of the expectation, standard deviation and coverage
intervals require numerical methods that involve a degree of
approximation.

5.2 Propagation of distributions

5.2.1 A formal definition [9] for the PDF for Y is

gY (η) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
gX(ξ)δ(η−f(ξ)) dξN · · ·dξ1, (2)

where δ(·) denotes the Dirac delta function.

NOTE The multiple integral (2) cannot generally be eval-
uated analytically. A numerical integration rule can be ap-
plied to provide an approximation to gY (η), but this is not
an efficient approach.

5.2.2 In this Supplement a generally efficient ap-
proach for determining (a numerical approximation to)
the distribution function

GY (η) =
∫ η

−∞
gY (z) dz

for Y is considered. It is based on applying a Monte
Carlo method (MCM) as an implementation of the prop-
agation of distributions (subclause 5.9).

5.3 Obtaining summary information

5.3.1 An estimate of Y is the expectation E(Y ). The
standard uncertainty associated with this estimate is
given by the standard deviation of Y , the positive square
root of the variance V(Y ) of Y .

5.3.2 A coverage interval for Y can be determined
from GY (η). Let α denote any numerical value between
zero and 1−p, where p is the required coverage probabil-
ity. The endpoints of a 100p % coverage interval for Y
are G−1

Y (α) and G−1
Y (p + α), i.e. the α- and (p + α)-

quantiles of GY (η).

5.3.3 The choice α = (1 − p)/2 gives the coverage
interval defined by the (1−p)/2- and (1+p)/2-quantiles,
providing a probabilistically symmetric 100p % coverage
interval.

NOTE When the PDF for Y is symmetric about the es-
timate y, the coverage interval obtained would be identical
to y ± Up, where the expanded uncertainty [GUM 2.3.5] Up

is given by the product of the standard uncertainty and the
coverage factor that is appropriate for that PDF. This PDF
is generally not known analytically.

5.3.4 A numerical value of α different from (1−p)/2
may be more appropriate if the PDF is asymmetric. The
shortest 100p % coverage interval can be used in this
case. It has the property that, for a unimodal (single-
peaked) PDF, it contains the mode, the most probable
value of Y . It is given by the numerical value of α sat-
isfying gY (G−1

Y (α)) = gY (G−1
Y (p + α)), if gY (η) is uni-

modal, and in general by the numerical value of α such
that G−1

Y (p + α)−G−1
Y (α) is a minimum.

5.3.5 The probabilistically symmetric 100p % cov-
erage interval and the shortest 100p % coverage in-
terval are identical for a symmetric PDF, such as the
Gaussian and scaled and shifted t-distribution used
within the GUM uncertainty framework. Therefore, in
comparing the GUM uncertainty framework with other
approaches, either of these intervals can be used.

5.3.6 Figure 1 shows the distribution function GY (η)
corresponding to an asymmetric PDF. Broken vertical
lines mark the endpoints of the probabilistically sym-
metric 95 % coverage interval and broken horizontal
lines the corresponding probability points, viz. 0.025
and 0.975. Continuous lines mark the endpoints of the
shortest 95 % coverage interval and the corresponding
probability points, which are 0.006 and 0.956 in this
case. The lengths of the 95 % coverage intervals in the
two cases are 1.76 unit and 1.69 unit, respectively.
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Figure 1 — A distribution function GY (η) corre-

sponding to an asymmetric PDF and the probabilis-

tically symmetric and shortest 95 % coverage inter-

vals (subclause 5.3.6). “Unit” denotes any unit.

5.4 Implementations of the propagation of
distributions

5.4.1 The propagation of distributions can be imple-
mented in several ways:

a) analytical methods, i.e. methods that provide a
mathematical representation of the PDF for Y ;

b) uncertainty propagation based on replacing the
model by a first-order Taylor series approxima-
tion [GUM 5.1.2] — the law of propagation of un-
certainty;

c) as b), except that contributions derived from
higher-order terms in the Taylor series approxima-
tion are included [GUM 5.1.2 note];

d) numerical methods [GUM G.1.5] that implement
the propagation of distributions, specifically us-
ing MCM (subclause 5.9).

NOTE 1 Analytical methods are ideal in that they do not
introduce any approximation. They are applicable in simple
cases only, however. A treatment and examples are avail-
able [8, 13]. These methods are not considered further in
this Supplement, apart from in the examples (clause 9) for
comparison purposes.

NOTE 2 MCM as considered here is regarded as a means
for providing a numerical representation of the distribution
for the output quantity, rather than a simulation method per
se. In the context of the propagation stage of uncertainty
evaluation, the problem to be solved is deterministic, there
being no random physical process to be simulated.

5.4.2 Approaches to uncertainty evaluation other
than the GUM uncertainty framework are permitted by
the GUM [GUM G.1.5]. The approach advocated in
this Supplement, based on the propagation of distrib-
utions, is general. For linear or linearized models and
input quantities for which the PDFs are Gaussian, the
approach yields results consistent with the GUM uncer-
tainty framework. However, in cases where the condi-
tions for the GUM uncertainty framework to be applied
(subclauses 5.7 and 5.8) do not hold, the approach of
this Supplement can generally be expected to lead to a
valid uncertainty statement.

5.4.3 An appropriate method has to be chosen for the
propagation stage. If it can be demonstrated that the
conditions necessary for the GUM uncertainty frame-
work to give valid results hold, then that approach can
be used. If there are indications that the GUM un-
certainty framework is likely to be invalid, then an-
other approach should be employed. A third situa-
tion can arise in which it is difficult to assess whether
or not the GUM uncertainty framework will be valid.
In all three cases, MCM provides a practical (alterna-
tive) method. In the first case, MCM may sometimes
be easier to apply due to difficulties in calculating sen-
sitivity coefficients [GUM 5.1.3], for example. In the
second, MCM can generally be expected to give valid
results, since it does not make approximating assump-
tions. In the third, MCM can be applied either to de-
termine the results directly or to assess the quality of
those provided by the GUM uncertainty framework.

5.4.4 The propagation of the PDFs gXi
(ξi), i =

1, . . . , N , for the input quantities Xi through the model
to provide the PDF gY (η) for the output quantity Y is
illustrated in figure 2 for N = 3 independent Xi. This
figure may be compared to figure 3 for the law of propa-
gation of uncertainty. In figure 2, the gXi

(ξi), i = 1, 2, 3,
are Gaussian, triangular, and Gaussian, respectively.
gY (η) is indicated as being asymmetric, as generally
arises for non-linear models or asymmetric gXi

(ξi).

-

gX3(ξ3)

-

gX2(ξ2)

-

gX1(ξ1)

Y = f(X) -

gY (η)

Figure 2 — Illustration of the propagation of dis-

tributions for N = 3 independent input quantities

(subclause 5.4.4).
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5.4.5 In practice, only for simple cases can the prop-
agation of distributions be implemented without making
approximations. The GUM uncertainty framework im-
plements one approximate method, and MCM another.
For a small but important subset of problems, the GUM
uncertainty framework is exact. MCM is never exact,
but is more valid than the GUM uncertainty framework
for a large class of problems.

5.5 Reporting the results

5.5.1 The following items would typically be re-
ported following the use of the propagation of distri-
butions:

a) an estimate y of the output quantity Y ;

b) the standard uncertainty u(y) associated with y;

c) the stipulated coverage probability 100p %
(e.g. 95 %);

d) the endpoints of the selected 100p % coverage in-
terval (e.g. 95 % coverage interval) for Y ;

e) any other relevant information, such as whether the
coverage interval is a probabilistically symmetric
coverage interval or a shortest coverage interval.

5.5.2 y, u(y) and the endpoints of a 100p % coverage
interval for Y should be reported to a number of decimal
digits such that the least significant decimal digit is in
the same position with respect to the decimal point as
that for u(y) [GUM 7.2.6]. One or two significant deci-
mal digits would usually be adequate to represent u(y).

NOTE 1 Each reported numerical value would typically
be obtained by rounding a numerical value expressed to a
greater number of significant decimal digits.

NOTE 2 A factor influencing the choice of one or two sig-
nificant decimal digits is the leading significant decimal digit
of u(y). If this digit is 1 or 2, the deviation of the reported nu-
merical value of u(y) from its numerical value before round-
ing is large relative to the latter numerical value. If the lead-
ing significant decimal digit is 9, the deviation is relatively
smaller.

NOTE 3 If the results are to be used within further calcu-
lations, consideration should be given to whether additional
decimal digits should be retained.

EXAMPLE Suppose it is meaningful to declare two signifi-
cant decimal digits in u(y), e.g.

u(y) = 0.028 V.

Then, correspondingly, y and the shortest 95 % coverage
interval for Y might be

y = 1.024 V, 95 % coverage interval = [0.983 V, 1.088 V].

However, if it were meaningful to report only one significant
decimal digit in u(y), then y, u(y) and the shortest 95 %
coverage interval for Y would be

y = 1.02 V, u(y) = 0.03 V,

95 % coverage interval = [0.98 V, 1.09 V].

The coverage interval is asymmetric with respect to y in both
cases.

5.6 GUM uncertainty framework

5.6.1 The GUM provides general guidance on many
aspects of the stages of uncertainty evaluation presented
in subclause 5.1.1. It also provides the GUM uncertainty
framework for the propagation and summarizing stages
of uncertainty evaluation. The GUM uncertainty frame-
work has been adopted by many organizations, is widely
used and has been implemented in standards and guides
on measurement uncertainty and also in software.

5.6.2 The GUM uncertainty framework comprises
the following stages. Each model input quantity is sum-
marized by its expectation and standard deviation, as
given by the PDF for that quantity [GUM 4.1.6]. The
expectation is taken as the best estimate of the quan-
tity and the standard deviation as the standard uncer-
tainty associated with that estimate. This information
is propagated, using the law of propagation of uncer-
tainty [GUM 5.1.2], through a first- or higher-order Tay-
lor series approximation to the model to provide (a) an
estimate of the output quantity and (b) the associated
standard uncertainty. That estimate is given by evalu-
ating the model at the best estimates of the input quan-
tities. A coverage interval for the output quantity is
provided based on taking the PDF for the output quan-
tity as Gaussian or, if the degrees of freedom associated
with the standard deviation of the output quantity is
finite [GUM G], as a scaled and shifted t-distribution.

NOTE The summaries of the input quantities also include,
where appropriate, the degrees of freedom associated with
the standard uncertainties [GUM 4.2.6]. They also include,
where appropriate, covariances associated with pairs of best
estimates of the input quantities [GUM 5.2.5].

5.6.3 The propagation and summarizing stages of
the GUM uncertainty framework (stages b) and c)
in subclause 5.1.1) can be summarized as the follow-
ing computational steps. Also see figure 3, which il-
lustrates the law of propagation of uncertainty for a
model having N = 3 independent input quantities X =
(X1, X2, X3)T, which are estimated by xi with associ-
ated standard uncertainties u(xi), i = 1, 2, 3. The out-
put quantity Y is estimated by y, with associated stan-
dard uncertainty u(y).

a) Obtain from the PDFs for the input quantities X =
(X1, . . . , XN )T the expectations x = (x1, . . . , xN )T
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and the standard deviations (standard uncertain-
ties) u(x) = (u(x1), . . . , u(xN ))T. Use instead the
joint PDF for X if pairs of the Xi are correlated
(have non-zero covariance);

b) Set the degrees of freedom (infinite or finite) asso-
ciated with each u(xi);

c) For each pair i, j for which the Xi and Xj

are not independent, obtain from the joint PDF
for Xi and Xj the covariance (mutual uncer-
tainty) u(xi, xj) associated with xi and xj ;

d) Form the partial derivatives of first order of f(X)
with respect to X;

e) Calculate y, the model evaluated at X equal to x;

f) Calculate the model sensitivity coefficients
[GUM 5.1.3] as the above partial derivatives
evaluated at x;

g) Calculate the standard uncertainty u(y) by combin-
ing u(x), the u(xi, xj), and the model sensitivity
coefficients [GUM formulae (10), (13)];

h) Calculate νeff , the effective degrees of freedom as-
sociated with u(y), using the Welch-Satterthwaite
formula [GUM formula (G.2b)];

i) Calculate the expanded uncertainty Up, and hence
a coverage interval (for a stipulated coverage prob-
ability p) for Y , regarded as a random variable, by
forming the appropriate multiple of u(y) through
taking the probability distribution of (Y − y)/u(y)
as a standard Gaussian distribution (νeff = ∞) or
t-distribution (νeff < ∞).

x1, u(x1) -

x2, u(x2) -

x3, u(x3) -

Y = f(X) - y, u(y)

Figure 3 — Illustration of the law of propagation of

uncertainty for N = 3 independent input quantities

(subclause 5.6.3).

5.7 Conditions for valid application of the
GUM uncertainty framework for linear
models

5.7.1 No condition is necessary for the valid appli-
cation of the law of propagation of uncertainty to linear
models (models that are linear in the Xi).

5.7.2 A coverage interval can be determined, in
terms of the information provided in the GUM, under
the following conditions:

a) the Welch-Satterthwaite formula is adequate for
calculating the effective degrees of freedom associ-
ated with u(y) [GUM G.4.1], when one or more of
the u(xi) has an associated degrees of freedom that
is finite;

NOTE This condition is required in order that Y can
be characterized by an appropriate scaled and shifted t-
distribution.

b) the Xi are independent when the degrees of freedom
associated with the u(xi) are finite;

NOTE This condition is required because the GUM
does not treat Xi that are not independent in conjunc-
tion with finite degrees of freedom.

c) the PDF for Y can adequately be approximated by
a Gaussian distribution or a scaled and shifted t-
distribution.

NOTE 1 This condition is satisfied when each Xi

is assigned a Gaussian distribution. It is also sat-
isfied when the conditions for the central limit theo-
rem [GUM G.2] hold.

NOTE 2 The GUM uncertainty framework may not
validly be applicable when there is an Xi whose as-
signed distribution is non-Gaussian and whose standard
uncertainty is dominant.

5.8 Conditions for valid application of the
GUM uncertainty framework for non-
linear models

5.8.1 The law of propagation of uncertainty can
validly be applied for non-linear models under the fol-
lowing conditions:

a) f is continuously differentiable with respect to the
elements Xi of X in the neighbourhood of the best
estimates xi of the Xi;

NOTE This condition is necessary for the applicability
of the law of propagation of uncertainty based on a first-
order Taylor series approximation to f(X) when the
non-linearity of f is insignificant [GUM 5.1.2].

b) condition a) applies for all derivatives up to the
appropriate order;

NOTE This condition is necessary for the ap-
plication of the law of propagation of uncertainty
based on a higher-order Taylor series approximation
to f(X) [GUM 5.1.2]. An expression for the most im-
portant terms of next highest order to be included are
given in the GUM [GUM 5.1.2 note].
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c) the Xi involved in significant higher-order terms of
a Taylor series approximation to f(X) are indepen-
dent.

NOTE This condition relates to the statement in
the GUM [GUM 5.1.2 note] concerning significant
model non-linearity in the case of independent Xi.
The GUM does not consider Xi that are not indepen-
dent in this context.

5.8.2 A coverage interval can be determined, in
terms of the information provided in the GUM, under
the following conditions:

a) the PDFs assigned to Xi involved in higher-
order terms of a Taylor series approximation are
Gaussian;

NOTE This condition constitutes a correction to the
statement in the GUM [GUM 5.1.2 note] that the
version of the law of propagation of uncertainty us-
ing higher-order terms is based on the symmetry of
the PDFs for the Xi [17, 25].

b) higher-order terms in the Taylor series approxima-
tion to f(X) are negligible if the law of propagation
of uncertainty based on a first-order Taylor series
approximation is used;

NOTE This condition is necessary to enable an ex-
panded uncertainty to be determined using a coverage
factor obtained from the Gaussian distribution or t-
distribution, and hence to establish a coverage interval.

c) conditions a), b) and c) in subclause 5.7.2 apply,
with the exception that note 1 to c) is replaced by
the following note.

NOTE This condition is required in order that coverage
intervals can be determined from these distributions.

5.8.3 When the conditions in subclause 5.8.1 or 5.8.2,
as appropriate, hold, the results from the application of
the GUM uncertainty framework can be expected to be
valid. These conditions apply in many circumstances.

NOTE If the analytical determination of the higher deriva-
tives, required when the non-linearity of the model is signif-
icant, is difficult or error-prone, suitable software for auto-
matic differentiation can be used. Alternatively, these deriv-
atives can be approximated numerically using finite differ-
ences [5]. (The GUM provides a finite-difference formula for
partial derivatives of first order [GUM 5.1.3 note 2].) Care
should be taken, however, because of the effects of subtrac-
tive cancellation when forming differences between numeri-
cally close model values.

5.9 Monte Carlo approach to the propaga-
tion and summarizing stages

5.9.1 MCM provides a general approach to obtain
an approximate numerical representation G, say, of the
distribution function GY (η) for Y [30, page 75]. The
heart of the approach is repeated sampling of the PDFs
for the Xi and the evaluation of the model in each case.

5.9.2 Since GY (η) encodes all the information known
about Y , any property of Y such as expectation, vari-
ance and coverage intervals can be approximated us-
ing G. The quality of these calculated results improves
as the number of times the PDFs are sampled increases.

5.9.3 Expectations and variances (and higher mo-
ments) can be determined directly from the set of model
values obtained. The determination of coverage inter-
vals requires these model values to be ordered.

5.9.4 If yr, r = 1, . . . ,M , represent M model values
sampled independently from a probability distribution
for Y , then the expectation E(Y ) and variance V(Y ) can
be approximated using the yr. In general, the moments
of Y (including E(Y ) and V(Y )) are approximated by
those of the sampled model values. Let My0 denote the
number of yr that are no greater than y0, any prescribed
number. The probability Pr(Y ≤ y0) is approximated
by My0/M . In this way, the yr provide a step func-
tion (histogram-like) approximation to the distribution
function GY (η).

5.9.5 Each yr is obtained by sampling at random
from each of the PDFs for the Xi and evaluating the
model at the sampled values so obtained. G, the pri-
mary output from MCM, constitutes the yr arranged in
monotonically increasing order.

5.9.6 MCM as an implementation of the propagation
of distributions is shown diagrammatically in figure 4
for M provided in advance (see subclause 7.9 otherwise).
MCM can be stated as a step-by-step procedure:

a) select the number M of Monte Carlo trials to be
made. See subclause 7.2;

b) generate M vectors, by sampling from the as-
signed PDFs, as realizations of the (set of N) input
quantities Xi. See subclause 7.3;

c) for each such vector, form the corresponding model
value of Y , yielding M model values. See sub-
clause 7.4;

d) sort these M model values into non-decreasing or-
der, using the sorted model values to provide G.
See subclause 7.5;
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e) use G to form an estimate y of Y and the stan-
dard uncertainty u(y) associated with y. See sub-
clause 7.6;

f) use G to form an appropriate coverage interval
for Y , for a stipulated coverage probability p. See
subclause 7.7.

NOTE 1 Subclause 6.4 and annex C provide information
on sampling from probability distributions.

NOTE 2 Mathematically, the average of the M model val-
ues is a realization of a random variable with expecta-
tion E(Y ) and variance V(Y )/M . Thus, the closeness of
agreement between this average and E(Y ) can be expected

to be proportional to M−1/2.

NOTE 3 Step e) can equally be carried out by using the M
model values of Y unsorted. It is necessary to sort these
model values if the coverage interval in step f) is required.

5.9.7 The effectiveness of MCM to determine y, u(y)
and a coverage interval for Y depends on the use of an
adequately large value of M (step a) in clause 5.9.6).
Guidance on obtaining such a value and generally on im-
plementing MCM is available [7]. Also see subclauses 7.2
and 7.9.

5.10 Conditions for the valid application of
the described Monte Carlo method

5.10.1 The propagation of distributions imple-
mented using MCM can validly be applied, and the re-
quired summary information subsequently determined,
in terms of the information provided in this Supplement,
under the following conditions:

a) f is continuous with respect to the elements Xi

of X in the neighbourhood of the best estimates xi

of the Xi;

NOTE No condition on the derivatives of f is required.

b) the distribution function for Y is continuous and
strictly increasing;

NOTE Conditions a) and b) are necessary to ensure
that the inverse of the distribution function is unique
and hence coverage intervals can be determined. Only
condition a) is needed if a coverage interval is not re-
quired.

c) the PDF for Y is

1) continuous over the interval for which this PDF
is strictly positive,

2) unimodal (single-peaked), and

Coverage interval
[ylow, yhigh] for Y

Subclause 7.7

?
Estimate y of Y and
associated standard
uncertainty u(y)

Subclause 7.6

?

Discrete representation
G of distribution
function for output
quantity Y

Subclause 7.5

?

M model values
yr = f(xr), r = 1, . . . ,M

Subclause 7.4

?

M vectors x1, . . . ,xM

sampled from gX(ξ)
Subclause 7.3

?

Model
Y = f(X)
Subclause 4.2

?

Joint PDF gX(ξ) for
input quantities X

Clause 6

?

Number M
of Monte
Carlo trials
Subclause 7.2

?

Coverage
probability p

Clause 3

MCM
INPUTS:

MCM
PROPAGATION:
DRAWS FROM
THE JOINT PDF
FOR THE INPUT
QUANTITIES
AND MODEL
EVALUATION
FOR THESE
DRAWS

PRIMARY MCM
OUTPUT:
DISTRIBUTION
FUNCTION FOR
THE OUTPUT
QUANTITY

MCM
SUMMARIZING

Figure 4 — The propagation and summarizing stages

of uncertainty evaluation using MCM to implement

the propagation of distributions (subclause 5.9.6).
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3) strictly increasing (or zero) to the left of the
mode and strictly decreasing (or zero) to the
right of the mode;

NOTE Condition c) is necessary to ensure that the
shortest coverage interval corresponding to a stipulated
coverage probability is unique. The mode may occur
at an endpoint of the interval over which this PDF is
strictly positive, in which case one of the two conditions
in 3) is vacuous.

d) E(Y ) and V(Y ) exist;

NOTE This condition is needed for (stochastic) conver-
gence of MCM as the number M of trials (subclause 7.2)
increases.

e) a sufficiently large value of M is used.

NOTE This condition is necessary to ensure that the
summary information is reliable. See subclause 8.2.

5.10.2 When the conditions in subclause 5.10.1 hold,
the results from the application of the propagation of
distributions implemented in terms of MCM can be ex-
pected to be valid. These conditions are less restrictive
than those (subclauses 5.7 and 5.8) for the application
of the GUM uncertainty framework.

5.11 Comparison of the GUM uncertainty
framework and the described Monte
Carlo method

5.11.1 The intention of this subclause is to compare
the principles on which the GUM uncertainty frame-
work and MCM as an implementation of the propaga-
tion of distributions are based. This subclause also pro-
vides some motivation for the use of MCM in circum-
stances where it is questionable whether the application
of the GUM uncertainty framework is valid.

5.11.2 For the purposes of comparing the GUM un-
certainty framework and MCM, it is helpful to review
the considerations in the GUM regarding Type A and
Type B evaluations of uncertainty. For Type A evalu-
ation, the GUM provides guidance on obtaining a best
estimate of a quantity and the associated standard un-
certainty from the average and the associated standard
deviation of a set of indications of the quantity, obtained
independently. For Type B evaluation, prior knowledge
concerning the quantity is used to characterize the quan-
tity by a PDF, from which a best estimate of the quan-
tity and the standard uncertainty associated with that
estimate are determined. The GUM states that both
types of evaluation are based on probability distribu-
tions [GUM 3.3.4], and that both approaches employ
recognized interpretations of probability [GUM 3.3.5].
The GUM considers PDFs as underpinning uncertainty

evaluation: in the context of the law of propagation
of uncertainty, it refers explicitly to input and out-
put quantities as being describable or characterized by
probability distributions [GUM G.6.6]. Also see sub-
clause 5.1.1 note 5.1.2.

5.11.3 The GUM uncertainty framework does not
explicitly determine a PDF for the output quantity.
However, the probability distribution used by that
framework to characterize the output quantity is some-
times referred to in this Supplement as “provided by”
or “resulting from” the GUM uncertainty framework.

5.11.4 This Supplement attempts to provide an ap-
proach that is as consistent with the GUM as possible,
especially relating to the use of PDFs for all quantities,
but departs from it in a clearly identified way where
appropriate. These departures are:

a) PDFs are explicitly assigned to all input quanti-
ties Xi (rather than associating standard uncertain-
ties with estimates xi of Xi) based on information
concerning these quantities. The classification into
Type A and Type B evaluations of uncertainty is
not needed;

b) sensitivity coefficients [GUM 5.1.3] are not an inher-
ent part of the approach, and hence the calculation
or numerical approximation of the partial deriva-
tives of the model with respect to the Xi is not
required. Approximations to sensitivity coefficients
can, however, be provided that correspond to tak-
ing all higher-order terms in the Taylor series ex-
pansion of the model into account (annex B);

c) a numerical representation of the distribution func-
tion for Y is obtained that is defined completely
by the model and the PDFs for the Xi, and not
restricted to a Gaussian distribution or scaled and
shifted t-distribution;

d) since the PDF for Y is not in general symmetric,
a coverage interval for Y is not necessarily centred
on the estimate of Y . Consideration therefore needs
to be given to the choice of coverage interval corre-
sponding to a specified coverage probability.

5.11.5 Since the GUM uncertainty framework explic-
itly uses only best estimates xi and the associated uncer-
tainties (and covariances and degrees of freedom where
appropriate), it is restricted in the information it can
provide about the PDF for Y . Essentially it is limited to
providing an estimate of Y and the associated standard
uncertainty, and perhaps the related (effective) degrees
of freedom. This estimate and the associated standard
uncertainty will be valid for a model that is linear in X.
Any other information about Y , e.g. coverage intervals,

12 c© JCGM 2006— All rights reserved



JCGM YYY:2006

is derived using additional assumptions, e.g. that the
distribution for Y is Gaussian or a scaled and shifted
t-distribution.

5.11.6 Some features of MCM are:

a) reduction in the analysis effort required for com-
plicated or non-linear models, especially since the
partial derivatives of first- or higher-order needed
in providing sensitivity coefficients for the law of
propagation of uncertainty are not needed;

b) generally improved estimate of Y for non-linear
models (cf. [GUM 4.1.4]);

c) improved standard uncertainty associated with the
estimate of Y for non-linear models, especially
when the Xi are assigned non-Gaussian (e.g. asym-
metric) PDFs, without the need to provide deriva-
tives of higher order [GUM 5.1.2 note];

d) provision of a coverage interval corresponding to a
stipulated coverage probability when the PDF for Y
cannot adequately be approximated by a Gaussian
distribution or a scaled and shifted t-distribution,
i.e. when the central limit theorem does not ap-
ply [GUM G.2.1, G.6.6]. Such an inadequate ap-
proximation can arise when (1) the PDF assigned
to a dominant Xi is not a Gaussian distribution or
a scaled and shifted t-distribution, (2) the model is
non-linear, or (3) the approximation error incurred
in using the Welch-Satterthwaite formula for effec-
tive degrees of freedom is not negligible;

e) a coverage factor [GUM 2.3.6] is not required when
determining a coverage interval.

6 Probability density functions for the
input quantities

6.1 General

6.1.1 This clause gives guidance on the assignment,
in some common circumstances, of PDFs to the input
quantities Xi in the first stage—formulation—of uncer-
tainty evaluation. Such an assignment can be based on
Bayes’ theorem [18] or the principle of maximum en-
tropy [8, 24, 49, 54].

NOTE 1 In some circumstances, another approach for as-
signing a PDF may be useful. In any case, as in any scientific
discipline, the reason for the decision should be recorded.

NOTE 2 Further details of the use of Bayes’ theorem and
the principle of maximum entropy will be given in a doc-
ument concerning concepts and basic principles being pro-
duced by JCGM.

6.1.2 Generally, a joint PDF gX(ξ) is assigned to
the input quantities X = (X1, . . . , XN )T. See sub-
clause 6.4.8.4 note 2.

6.1.3 When the Xi are independent, PDFs gXi
(ξi)

are assigned individually based on an analysis of a se-
ries of indications (Type A evaluation of uncertainty)
or based on scientific judgement using information [48]
such as historical data, calibrations, and expert judge-
ment (Type B evaluation of uncertainty) [GUM 3.3.5].

6.1.4 When some of the Xi are mutually indepen-
dent, PDFs are assigned individually to them and a
joint PDF to the remainder.

NOTE It may be possible to remove some or all dependen-
cies by re-expressing relevant input quantities in terms of
more fundamental independent input quantities on which the
original input quantities depend [GUM F1.2.4, H.1]. Such
changes can simplify both the application of the law of prop-
agation of uncertainty and the propagation of distributions.
Details and examples are available [15].

6.1.5 Information relevant to the assignment
of PDFs to the Xi is contained in the GUM [GUM 4.3].

6.1.6 Comprehensive guidance on the assignment
of PDFs individually or jointly to the Xi is beyond the
scope of this Supplement. Such assigned PDFs encode
the knowledge and expertise of the metrologist who for-
mulates the model and who is ultimately responsible for
the quality of the final results.

6.1.7 A standard text on probability distributions is
Evans, Hastings and Peacock [16].

6.2 Bayes’ theorem

6.2.1 Suppose that information about an input quan-
tity X consists of a series of indications regarded as real-
izations of independent, identically distributed random
variables characterized by a specified PDF, but with un-
known mean and variance. Bayes’ theorem can then be
used to calculate a PDF for X, where X is taken to
be equal to the unknown mean of these random vari-
ables. Calculation proceeds in two steps. First, a non-
informative joint prior (pre-data) PDF is assigned to
the unknown mean and variance. Using Bayes’ theo-
rem, this joint prior PDF is then updated, based on
the information supplied by the series of indications, to
yield a joint posterior (post-data) PDF for the two un-
known parameters. The desired posterior PDF for the
unknown mean is then calculated as a marginal PDF
by integrating over the possible values of the unknown
variance (subclause 6.4.9.2).
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6.2.2 With the use of Bayes’ theorem, the updat-
ing is carried out by forming the product of a likelihood
function and the prior PDF [18]. The likelihood function
is the product of functions, one function for each indi-
cation and identical in form, e.g. to a Gaussian PDF
with expectation equal to the indication and variance
formally equal to the unknown variance. The poste-
rior PDF is then determined by integrating this product
over all possible values of the variance and normalizing
the resulting expression.

NOTE 1 In some cases (e.g. as in subclause 6.4.11), the
random variables, of which the indications are regarded as re-
alizations, are characterized by a PDF with only one parame-
ter. In such cases, a non-informative prior PDF is assigned
to the unknown expectation of the random variables, and
the posterior distribution for X is given directly by Bayes’
theorem, without the need for marginalisation.

NOTE 2 Bayes’ theorem can also be applied in other cir-
cumstances, e.g. when the expectation and standard devia-
tion are unknown and equal.

6.3 Principle of maximum entropy

6.3.1 When using the principle of maximum entropy,
introduced by Jaynes [23], a unique PDF is selected
among all possible PDFs having specified properties, e.g.
specified central moments of different orders or specified
intervals for which the PDF is non-zero. This method
is particularly useful for assigning PDFs to quantities
for which a series of indications is not available or to
quantities that have not explicitly been measured at all.

6.3.2 In applying the principle of maximum entropy,
to obtain a PDF gX(ξ) that adequately characterizes
incomplete knowledge about a quantity X according to
the information available, the functional

S[g] = −
∫

gX(ξ) ln gX(ξ) dξ,

the “information entropy”, introduced by Shannon [46],
is maximized under constraints given by the informa-
tion.

6.4 Probability density function assign-
ment for some common circumstances

6.4.1 General

Subclauses 6.4.2–6.4.11 provide assignments of PDFs to
quantities based on various types of information regard-
ing those quantities. Given for each PDF gX(ξ) are
(a) formulae for the expectation and variance of X, and
(b) the manner in which sampling from gX(ξ) can be un-
dertaken. Table 1 facilitates the use of these subclauses
and also illustrates the corresponding PDFs.

NOTE These illustrations of the PDFs are not drawn to
scale. The multivariate Gaussian PDF is not illustrated.

6.4.2 Rectangular distributions

6.4.2.1 If the only available information regarding
a quantity X is a lower limit a and an upper limit b
with a < b, then, according to the principle of max-
imum entropy, a rectangular distribution R(a, b) over
the interval [a, b] would be assigned to X.

6.4.2.2 The PDF for X is

gX(ξ) =
{

1/(b− a), a ≤ ξ ≤ b,
0, otherwise.

6.4.2.3 X has expectation and variance

E(X) =
a + b

2
, V(X) =

(b− a)2

12
. (3)

6.4.2.4 To sample from R(a, b), make a draw r
from the standard rectangular distribution R(0, 1) (sub-
clause C.3.3), and form

ξ = a + (b− a)r.

6.4.3 Rectangular distributions with inexactly
prescribed limits

6.4.3.1 A quantity X is known to lie between lim-
its A and B with A < B, where the midpoint (A+B)/2
of the interval defined by these limits is fixed and the
length B − A of the interval is not known exactly. A
is known to lie in the interval a ± d and B in b ± d,
where a, b and d, with d > 0 and a + d < b − d, are
specified. If no other information is available concern-
ing X, A and B, the principle of maximum entropy can
be applied to assign to X a “curvilinear trapezoid” (a
rectangular distribution with inexactly prescribed lim-
its).

6.4.3.2 The PDF for X is

gX(ξ) =
1
4d


ln[(w + d)/(x− ξ)], a− d ≤ ξ ≤ a + d,
ln[(w + d)/(w − d)], a + d < ξ < b− d,
ln[(w + d)/(ξ − x)], b− d ≤ ξ ≤ b + d,
0, otherwise,

(4)
where x = (a + b)/2 and w = (b − a)/2 are, re-
spectively, the midpoint and semi-width of the inter-
val [a, b] [GUM 4.3.9 note 2]. This PDF is trapezoidal-
like, but has flanks that are not straight lines.

NOTE Formula (4) can be expressed as

gX(ξ) =
1

4d
max

(
ln

w + d

max(|ξ − x|, w − d)
, 0

)
14 c© JCGM 2006— All rights reserved
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Table 1 — Available information and the PDF assigned on the basis of that information (subclause 6.4.1).

Available information Assigned PDF and illustration (not to scale) Subclause

Lower and upper limits a, b Rectangular:
R(a, b)

6.4.2

Inexact lower and upper limits a ± d,
b± d

Curvilinear trapezoid:
CTrap(a, b, d)

6.4.3

Sum of two quantities assigned rectan-
gular distributions with lower and up-
per limits a1, b1 and a2, b2

Trapezoidal:
Trap(a, b, β) with a = a1 + a2,
b = b1 + b2,
β = |(b1 − a1)− (b2 − a2)|/(b− a)

6.4.4

Sum of two quantities assigned rectan-
gular distributions with lower and up-
per limits a1, b1 and a2, b2 and the
same semi-width (b1 − a1 = b2 − a2)

Triangular:
T(a, b) with a = a1 + a2, b = b1 + b2

6.4.5

Sinusoidal cycling between lower and
upper limits a, b

Arc sine (U-shaped):
U(a, b)

6.4.6

Best estimate x and associated stan-
dard uncertainty u(x)

Gaussian:
N(x, u2(x))

6.4.7

Best estimate x of vector quantity and
associated uncertainty matrix Ux

Multivariate Gaussian:
N(x, Ux)

6.4.8

Series of indications x1, . . . , xn sampled
independently from a quantity having
a Gaussian distribution, with unknown
expectation and unknown variance

Scaled and shifted t:

tn−1(x̄, s2/n) with x̄ =
n∑

i=1

xi/n,

s2 =
n∑

i=1

(xi − x̄)2/(n− 1)

6.4.9.2

Best estimate x, expanded uncertainty
Up, coverage factor kp and effective de-
grees of freedom νeff

Scaled and shifted t:
tνeff (x, (Up/kp)2)

6.4.9.7

Best estimate x of non-negative quan-
tity

Exponential:
Ex(1/x)

6.4.10

Number q of objects counted Gamma:
G(q + 1, 1)

6.4.11
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JCGM YYY:2006

for computer implementation.

6.4.3.3 X has expectation and variance

E(X) =
a + b

2
, V(X) =

(b− a)2

12
+

d2

9
. (5)

NOTE 1 The variance in expression (5) is always greater
than the variance holding for exact limits in expression (3),
i.e. when d = 0.

NOTE 2 The GUM treats the information about X in
subclause 6.4.3.1 by assigning a degrees of freedom to
the standard uncertainty associated with the best estimate
of X [GUM G.4.2].

6.4.3.4 To sample from CTrap(a, b, d), make two
draws r1 and r2 independently from the standard rectan-
gular distribution R(0, 1) (subclause C.3.3), and form

as = (a− d) + 2dr1, bs = (a + b)− as,

and
ξ = as + (bs − as)r2.

NOTE as is a draw from the rectangular distribution with
limits a ± d. bs is then formed to ensure that the midpoint
of as and bs is the prescribed value x = (a + b)/2.

EXAMPLE A certificate states that a quantity X lies in the
interval 10.0 V ± 0.1 V. No other information is available
concerning X, except that it is believed that the magnitude
of the interval endpoints is the result of rounding correctly
some numerical value (subclause 3.21). On this basis, that
numerical value lies between 0.05 V and 0.15 V, since the
numerical value of every point in the interval (0.05, 0.15)
rounded to one significant decimal digit is 0.1. The location
of the interval can therefore be regarded as fixed, whereas
its width is inexact. The best estimate of X is x = 10.0 V
and, using expression (5) based on a = 9.9 V, b = 10.1 V
and d = 0.05 V, the associated standard uncertainty u(x) is
given by

u2(x) =
(0.2)2

12
+

(0.05)2

9
= 0.003 6.

Hence u(x) = (0.003 6)1/2 = 0.060 V, which can be com-

pared with 0.2/
√

12 = 0.058 V in the case of exact limits,
given by replacing d by zero. The use of exact limits in this
case gives a numerical value for u(x) that is 4 % smaller than
that for inexact limits. The relevance of such a difference
needs to be considered in the context of the application.

6.4.4 Trapezoidal distributions

6.4.4.1 The assignment of a symmetric trape-
zoidal distribution to a quantity is discussed in
the GUM [GUM 4.3.9]. Suppose a quantity X is de-
fined as the sum of two independent quantities X1

and X2. Suppose, for i = 1, 2, Xi is assigned a rectangu-
lar distribution R(ai, bi) with lower limit ai and upper
limit bi. Then the distribution for X is a symmetric

trapezoidal distribution Trap(a, b, β) with lower limit a,
upper limit b and a parameter β equal to the ratio of
the top width of the trapezoid to the base width. The
parameters of this trapezoidal distribution are related
to those of the rectangular distributions by

a = a1 + a2, b = b1 + b2, β =
λ1

λ2
, (6)

where

λ1 =
|(b1 − a1)− (b2 − a2)|

2
, λ2 =

b− a

2
, (7)

and
λ1 ≤ λ2.

6.4.4.2 The PDF for X (figure 5), obtained using
convolution [40, p93], is

gX(ξ) = (8)
(ξ − x + λ2)/(λ2

2 − λ2
1), x− λ2 ≤ ξ < x− λ1,

1/(λ1 + λ2), x− λ1 ≤ ξ ≤ x + λ1,
(x + λ2 − ξ)/(λ2

2 − λ2
1), x + λ1 < ξ ≤ x + λ2,

0, otherwise,

where x = (a + b)/2.

NOTE Formula (8) can be expressed as

gX(ξ) =
1

λ1 + λ2
min

(
1

λ2 − λ1
max (λ2 − |ξ − x|, 0) , 1

)
for computer implementation.

�
�

�� @
@

@@ -

6

a = x − λ2 x − λ1 x x + λ1 b = x + λ2

ξ

g(ξ)

1
λ1+λ2

Figure 5 — The trapezoidal PDF for X = X1 + X2,

where the PDFs for X1 and X2 are rectangular (sub-

clause 6.4.4.2).

6.4.4.3 X has expectation and variance

E(X) =
a + b

2
, V(X) =

(b− a)2

24
(1 + β2).

6.4.4.4 To sample from Trap(a, b, β), make two
draws r1 and r2 independently from the standard rectan-
gular distribution R(0, 1) (subclause C.3.3), and form

ξ = a +
b− a

2
[(1 + β)r1 + (1− β)r2].
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6.4.5 Triangular distributions

6.4.5.1 Suppose a quantity X is defined as the sum
of two independent quantities, each assigned a rectan-
gular distribution (as in subclause 6.4.4), but with equal
semi-widths, i.e. b1−a1 = b2−a2. It follows from expres-
sions (6) and (7) that λ1 = 0 and β = 0. The distrib-
ution for X is the trapezoidal distribution Trap(a, b, 0),
which reduces to the (symmetric) triangular distribu-
tion T(a, b) over the interval [a, b].

6.4.5.2 The PDF for X is

gX(ξ) =

 (ξ − a)/w2, a ≤ ξ ≤ x,
(b− ξ)/w2, x < ξ ≤ b,
0, otherwise,

(9)

where x = (a + b)/2 and w = λ2 = (b− a)/2.

NOTE Formula (9) can be expressed as

gX(ξ) =
2

b− a
max

(
1− 2|ξ − x|

b− a
, 0

)
.

for computer implementation.

6.4.5.3 X has expectation and variance

E(X) =
a + b

2
, V(X) =

(b− a)2

24
.

6.4.5.4 To sample from T(a, b), make two draws r1

and r2 independently from the standard rectangular dis-
tribution R(0, 1) (subclause C.3.3), and form

ξ = a +
b− a

2
(r1 + r2).

6.4.6 Arc sine (U-shaped) distributions

6.4.6.1 If a quantity X is known to cycle sinusoidally,
with unknown phase Φ, between specified limits a and b,
with a < b, then, according to the principle of maximum
entropy, a rectangular distribution R(0, 2π) would be as-
signed to Φ. The distribution assigned to X is the arc
sine distribution U(a, b) [16], given by the transforma-
tion

X =
a + b

2
+

b− a

2
sinΦ,

where Φ has the rectangular distribution R(0, 2π).

6.4.6.2 The PDF for X is

gX(ξ) ={
(2/π)[(b− a)2 − (2ξ − a− b)2]−1/2, a < ξ < b,
0, otherwise.

NOTE U(a, b) is related to the standard arc sine distribu-
tion U(0, 1) given by

gZ(z) =

{
(z(1− z))−1/2/π, 0 < z < 1,
0, otherwise,

(10)

in the variable Z, through the linear transformation

X = a + (b− a)Z.

Z has expectation 1/2 and variance 1/8. The distribu-
tion (10) is termed the arc sine distribution, since the corre-
sponding distribution function is

GZ(z) =
1

π
arcsin (2z − 1) +

1

2
.

It is a special case of the beta distribution with both para-
meters equal to one half.

6.4.6.3 X has expectation and variance

E(X) =
a + b

2
, V(X) =

(b− a)2

8
.

6.4.6.4 To sample from U(a, b), make a draw r
from the standard rectangular distribution R(0, 1) (sub-
clause C.3.3), and form

ξ =
a + b

2
+

b− a

2
sin 2πr.

6.4.7 Gaussian distributions

6.4.7.1 If a best estimate x and associated standard
uncertainty u(x) are the only information available re-
garding a quantity X, then, according to the principle
of maximum entropy, a Gaussian probability distribu-
tion N(x, u2(x)) would be assigned to X.

6.4.7.2 The PDF for X is

gX(ξ) =
1√

2πu(x)
exp

(
− (ξ − x)2

2u2(x)

)
. (11)

6.4.7.3 X has expectation and variance

E(X) = x, V(X) = u2(x).

6.4.7.4 To sample from N(x, u2(x)), make a draw z
from the standard Gaussian distribution N(0, 1) (sub-
clause C.4), and form

ξ = x + u(x)z.

6.4.8 Multivariate Gaussian distributions

6.4.8.1 A comparable result to that in sub-
clause 6.4.7.1 holds for an N -dimensional quantity X =
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(X1, . . . , XN )T. If the only information available is a
best estimate x = (x1, . . . , xN )T of X and the associ-
ated (strictly) positive definite uncertainty matrix

Ux =


u2(x1) u(x1, x2) · · · u(x1, xN )

u(x2, x1) u2(x2) · · · u(x2, xN )
...

...
. . .

...
u(xN , x1) u(xN , x2) · · · u2(xN )

 ,

a multivariate Gaussian distribution N(x,Ux) would be
assigned to X.

6.4.8.2 The joint PDF for X is

gX(ξ) =
1

{(2π)N detUx}1/2

× exp
(
−1

2
(ξ − x)TUx

−1(ξ − x)
)

. (12)

6.4.8.3 X has expectation and covariance matrix

E(X) = x, V(X) = Ux.

6.4.8.4 To sample from N(x,Ux), make N
draws zi, i = 1, . . . , N , independently from the stan-
dard Gaussian distribution N(0, 1) (subclause C.4), and
form

ξ = x + RTz,

where z = (z1, . . . , zN )T and R is the upper triangu-
lar matrix given by the Cholesky decomposition Ux =
RTR (subclause C.5).

NOTE 1 In place of the Cholesky decomposition Ux =
RTR, any matrix factorization of this form can be used.

NOTE 2 The only joint PDFs considered explicitly in this
Supplement are multivariate Gaussian, distributions com-
monly used in practice. A numerical procedure for sampling
from a multivariate Gaussian PDF is given above (and in
subclause C.5). If another multivariate PDF is to be used,
a means for sampling from it would need to be provided.

NOTE 3 The multivariate Gaussian PDF (12) reduces to
the product of N univariate Gaussian PDFs when there are
no covariance effects. In that case

Ux = diag(u2(x1), . . . , u
2(xN )),

whence

gX(ξ) =

N∏
i=1

gXi
(ξi),

with

gXi
(ξi) =

1√
2πu(xi)

exp

(
− (ξi − xi)

2

2u2(xi)

)
.

6.4.9 t-distributions

6.4.9.1 t-distributions typically arise in two circum-
stances: the evaluation of a series of indications (sub-
clause 6.4.9.2), and the interpretation of calibration cer-
tificates (subclause 6.4.9.7).

6.4.9.2 Suppose that a series of n indica-
tions x1, . . . , xn is available, regarded as being obtained
independently from a quantity with unknown expec-
tation µ0 and unknown variance σ2

0 having Gaussian-
distribution N(µ0, σ

2
0). The desired input quantity X

is taken to be equal to µ0. Then, assigning a non-
informative joint prior distribution to µ0 and σ2

0 , and us-
ing Bayes’ theorem, the marginal PDF for X is a scaled
and shifted t-distribution tν(x̄, s2/n) with ν = n − 1
degrees of freedom, where

x̄ =
1
n

n∑
i=1

xi, s2 =
1

n− 1

n∑
i=1

(xi − x̄)2,

being, respectively, the average and variance of the in-
dications [18].

6.4.9.3 The PDF for X is

gX(ξ) =
Γ(n/2)

Γ((n− 1)/2)
√

(n− 1)π
× 1

s/
√

n

×

(
1 +

1
n− 1

(
ξ − x̄

s/
√

n

)2
)−n/2

, (13)

where
Γ(z) =

∫ ∞

0

tz−1e−tdt, z > 0,

is the gamma function.

6.4.9.4 X has expectation and variance

E(X) = x̄, V(X) =
n− 1
n− 3

s2

n
,

where E(X) is defined only for n > 2 and V(X) only
for n > 3. For n > 3, the best estimate of X and the
associated standard uncertainty are therefore

x = x̄, u(x) =

√
n− 1
n− 3

s√
n

. (14)

NOTE 1 In the GUM [GUM 4.2], the standard uncer-
tainty u(x) associated with the average of a series of n indi-
cations obtained independently is evaluated as u(x) = s/

√
n,

rather than from formula (14), and the associated degrees of
freedom ν = n − 1 is considered as a measure of the relia-
bility of u(x). By extension, a degrees of freedom is associ-
ated with an uncertainty obtained from a Type B evaluation,
based on subjective judgement of the reliability of the eval-
uation [GUM G.4.2] (cf. subclause 6.4.3.3 note 2). Degrees
of freedom associated with the uncertainties u(xi) are nec-
essary to obtain, by application of the Welch-Satterthwaite
formula, the effective degrees of freedom νeff associated with
the uncertainty u(y).
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NOTE 2 In the Bayesian context of this Supplement, con-
cepts such as the reliability, or the uncertainty, of an uncer-
tainty are not necessary. Accordingly, the degrees of freedom
in a Type A evaluation of uncertainty is no longer viewed
as a measure of reliability, and the degrees of freedom in a
Type B evaluation does not exist.

6.4.9.5 To sample from tν(x̄, s2/n), make a draw t
from the central t-distribution tν with ν = n−1 degrees
of freedom ([GUM G.3], subclause C.6), and form

ξ = x̄ +
s√
n

t.

6.4.9.6 If instead of a standard deviation s calculated
from a single series of indications, a pooled standard
deviation sp with νp degrees of freedom obtained from Q
such sets,

s2
p =

1
νp

Q∑
j=1

νjs
2
j , νp =

Q∑
j=1

νj ,

is used, the degrees of freedom ν = n−1 of the scaled and
shifted t-distribution assigned to X should be replaced
by the degrees of freedom νp associated with the pooled
standard deviation sp. As a consequence, formula (13)
should be replaced by

gX(ξ) =
Γ((νp + 1)/2)
Γ(νp/2)√νpπ

× 1
sp/

√
n

×

(
1 +

1
νp

(
ξ − x̄

sp/
√

n

)2
)−(νp+1)/2

and expressions (14) by

x = x̄ =
1
n

n∑
i=1

xi, u(x) =
√

νp

νp − 2
sp√
n

(νp ≥ 3).

6.4.9.7 If the source of information about a quan-
tity X is a calibration certificate [GUM 4.3.1] in which
a best estimate x, the expanded uncertainty Up, the
coverage factor kp and the effective degrees of free-
dom νeff are stated, then a scaled and shifted t-
distribution tν(x, (Up/kp)2) with ν = νeff degrees of free-
dom should be assigned to X.

6.4.9.8 If νeff is stated as infinite or not speci-
fied, in which case it would be taken as infinite in
the absence of other information, a Gaussian distri-
bution N(x, (Up/kp)2) would be assigned to X (sub-
clause 6.4.7.1).

NOTE This distribution is the limiting case of the scaled and
shifted t-distribution tν(x, (Up/kp)2) as ν tends to infinity.

6.4.10 Exponential distributions

6.4.10.1 If the only available information regarding a
non-negative quantity X is a best estimate x > 0 of X,
then, according to the principle of maximum entropy,
an exponential distribution Ex(1/x) would be assigned
to X.

6.4.10.2 The PDF for X is

gX(ξ) =
{

exp(−ξ/x)/x, ξ ≥ 0,
0, otherwise.

6.4.10.3 X has expectation and variance

E(X) = x, V(X) = x2.

6.4.10.4 To sample from Ex(1/x), make a draw r
from the standard rectangular distribution R(0, 1) (sub-
clause C.3.3), and form

ξ = −x ln r.

NOTE Further information regarding the assignment
of PDFs to non-negative quantities is available [14].

6.4.11 Gamma distributions

6.4.11.1 Suppose the quantity X is the average num-
ber of objects present in a sample of a fixed size (e.g.
the average number of particles in an air sample taken
from a clean room, or the average number of photons
emitted by a source in a specified time interval). Sup-
pose q is the number of objects counted in a sample of
the specified size, and the counted number is assumed
to be a quantity with unknown expectation having a
Poisson distribution. Then, according to Bayes’ theo-
rem, after assigning a constant prior distribution to the
expectation, a gamma distribution G(q + 1, 1) would be
assigned to X.

6.4.11.2 The PDF for X is

gX(ξ) =
{

ξq exp(−ξ)/q!, ξ ≥ 0,
0, otherwise. (15)

6.4.11.3 X has expectation and variance

E(X) = q + 1, V(X) = q + 1. (16)

6.4.11.4 To sample from G(q + 1, 1), make q + 1
draws ri, i = 1, . . . , q + 1, independently from the stan-
dard rectangular distribution R(0, 1) (subclause C.3.3),
and form [16]

ξ = − ln
q+1∏
i=1

ri.
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NOTE 1 If the counting is performed over several samples
(according to the same Poisson distribution), and qi is the
number of objects counted in the ith sample, of size Si, then
the distribution for the average number of objects in a sample
of size S =

∑
i
Si is G(α, β) with α = 1 +

∑
i
qi and β = 1.

Formulae (15) and (16) apply with q =
∑
i

qi.

NOTE 2 The gamma distribution is a generalization of the
chi-squared distribution and is used to characterize informa-
tion associated with variances.

NOTE 3 The particular gamma distribution in sub-
clause 6.4.11.4 is an Erlang distribution given by the sum
of q + 1 exponential distributions with parameter 1 [16].

6.5 Probability distributions from previous
uncertainty calculations

A previous uncertainty calculation may have provided
a probability distribution for an output quantity that
is to become an input quantity for a further uncer-
tainty calculation. This probability distribution may
be available analytically in a recognized form, e.g. as a
Gaussian PDF. It may be available as an approximation
to the distribution function for a quantity obtained from
a previous application of MCM, for example. Means for
describing such a distribution function for a quantity is
given in subclauses 7.5.1 and D.2.

7 Implementation of a Monte Carlo
method

7.1 General

This clause gives information about the implementation
of a Monte Carlo method for the propagation of distri-
butions: see the procedure given in subclause 5.9.6 and
shown diagrammatically in figure 4.

7.2 Number of Monte Carlo trials

7.2.1 A value of M , the number of Monte Carlo tri-
als, i.e. the number of model evaluations to be made,
needs to be selected. It can be chosen a priori, in which
case there will be no direct control over the quality of
the numerical results provided by MCM. The reason is
that the number of trials needed to provide these results
to a prescribed numerical tolerance will depend on the
“shape” of the PDF for the output quantity and on the
coverage probability required. Also, the calculations are
stochastic in nature, being based on random sampling.

NOTE A value of M = 106 can often be expected to deliver
a 95 % coverage interval for the output quantity such that
this length is correct to one or two significant decimal digits.

7.2.2 The choice of a value of M that is large com-
pared with 1/(1 − p), e.g. M at least 104 times greater
than 1/(1−p), should be made. It can then be expected
that G will provide a reasonable discrete representation
of GY (η) in the regions near the endpoints of a 100p %
coverage interval for Y .

7.2.3 Because there is no guarantee that this or any
specific pre-assigned number will suffice, a procedure
that selects M adaptively, i.e. as the trials progress, can
be used. Some guidance in this regard is available [2].
Subclause 7.9 provides such a procedure, a property of
which is that the number of trials taken is economically
consistent with the expectation of achieving a required
numerical tolerance.

NOTE If the model is complicated, e.g. involving the so-
lution of a finite-element model, because of large computing
times it may not be possible to use a sufficiently large numeri-
cal value of M to obtain adequate distributional knowledge of
the output quantity. In such a case an approximate approach
would be to regard gY (η) as Gaussian (as in the GUM)
and proceed as follows. A relatively small value of M , 50
or 100, for example, would be used. The average and stan-
dard deviation of the resulting M model values of Y would
be taken as y and u(y), respectively. Given this information,
a Gaussian PDF gY (η) = N(y, u2(y)) would be assigned to
characterize the knowledge of Y (see subclause 6.4.7) and
a desired coverage interval for Y calculated. Although this
use of a small value of M is inevitably less reliable than that
of a large numerical value in that it does not provide an ap-
proximation to the PDF for Y , it does take account of model
non-linearity.

7.3 Sampling from probability distribu-
tions

In an implementation of MCM, M vec-
tors xr, r = 1, . . . ,M (subclause 7.2), are drawn
from the PDFs gXi(ξi) for the N input quantities Xi.
Draws would be made from the joint (multivari-
ate) PDF gX(ξ) if appropriate. Recommendations
concerning the manner in which this sampling can be
carried out are given in annex C for the commonest
distributions, viz. the rectangular, Gaussian, t, and
multivariate Gaussian. Also see subclause 6.4. It is
possible to draw at random from any other distribution.
See subclause C.2. Some such distributions could
be approximations to distributions based on Monte
Carlo results from a previous uncertainty calculation
(subclauses 6.5 and 7.5 and annex D).

NOTE For the results of MCM to be statistically valid,
it is necessary that the pseudo-random number generators
used to draw from the distributions required have appropri-
ate properties. Some tests of randomness of the numbers
produced by a generator are indicated in subclause C.3.2.
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7.4 Evaluation of the model

7.4.1 The model is evaluated for each of the M draws
from the PDFs for the N input quantities. Specifi-
cally, denote the M draws by x1, . . . ,xM , where the rth
draw xr contains x1,r, . . . , xN,r, with xi,r a draw from
the PDF for Xi. Then, the model values are

yr = f(xr), r = 1, . . . ,M.

7.4.2 The necessary modifications are made to sub-
clause 7.4.1 if the Xi are not independent and hence a
joint PDF is assigned to them.

NOTE Model and derivative evaluations are made when
applying the law of propagation of uncertainty, using exact
derivatives, at the best estimates of the input quantities.
Model evaluations only are made when applying the law of
propagation of uncertainty when numerical (finite-difference)
approximations to derivatives are used. These evaluations
are made, if the GUM recommendation [GUM 5.1.3 note 2]
is adopted, at the best estimates of the input quantities and
at points perturbed by ± one standard uncertainty from each
estimate in turn. With MCM, model evaluations are made in
the neighbourhood of these best estimates, viz. at points that
can be expected to be up to several standard uncertainties
away from these estimates. The fact that model evaluations
are made at different points according to the approach used
may raise issues regarding the numerical procedure used to
evaluate the model, e.g. ensuring its convergence (where it-
erative schemes are used) and numerical stability. The user
should ensure that, where appropriate, the numerical meth-
ods used to evaluate f are valid for a sufficiently large region
containing these best estimates. Only occasionally would it
be expected that this aspect is critical.

7.5 Discrete representation of the distrib-
ution function for the output quantity

7.5.1 A discrete representation G of the distribution
function GY (η) for the output quantity Y can be ob-
tained as follows:

a) sort the model values yr, r = 1, . . . ,M , provided
by MCM into non-decreasing order. Denote the
sorted model values by y(r), r = 1, . . . ,M ;

NOTE 1 The term “non-decreasing” rather than “in-
creasing” is used because of possible equalities among
the model values yr.

NOTE 2 A sorting algorithm taking a number of op-
erations proportional to M ln M should be used [45]. A
naive algorithm would take a time proportional to M2,
making the computation time unnecessarily long. See
subclause 7.8.

b) if necessary, make minute numerical perturbations
to any replicate model values y(r) in such a way that
the resulting complete set of y(r), r = 1, . . . ,M ,

form a strictly increasing sequence (cf. condition b)
in subclause 5.10.1);

NOTE 1 Making only minute perturbations will en-
sure that the statistical properties of the y(r) are re-
tained.

NOTE 2 It is exceedingly unlikely that perturbations
are necessary, because of the very large number of
distinct floating-point numbers that can arise from
model values generated from input quantities obtained
as draws from random number generators. A sound
software implementation would make appropriate pro-
vision, however.

c) take G as the set y(r), r = 1, . . . ,M .

NOTE 1 Sampling from G is readily carried out by draw-
ing randomly from the y(r), r = 1, . . . , M , with equal prob-
ability.

NOTE 2 A variety of information can be deduced from G.
In particular, information supplementary to the expectation
and standard deviation can be provided, such as measures
of skewness and kurtosis, and other statistics such as the
mode and the median. However, only the expectation and
standard deviation, used as an estimate of Y and the asso-
ciated standard uncertainty, respectively, are to be used as
the basis for uncertainty propagation in a further stage of
uncertainty evaluation [GUM 0.4].

7.5.2 The y(r) (or yr), when assembled into a his-
togram (with suitable cell widths) form a frequency dis-
tribution that, when normalized to have unit area, pro-
vides an approximation to the PDF gY (η) for Y . Cal-
culations are not generally carried out in terms of this
histogram, the resolution of which depends on the choice
of cell widths, but in terms of G. The histogram can,
however, be useful as an aid to understanding the na-
ture of the PDF, e.g. the extent of its asymmetry. See,
however, subclause 7.8.3 note 1 regarding the use of a
large numerical value of M .

7.5.3 A continuous approximation to GY (η) is some-
times useful. Annex D contains a means for obtaining
such an approximation.

7.6 Estimate of the output quantity and
the associated standard uncertainty

The average

ỹ =
1
M

M∑
r=1

yr (17)

and standard deviation u(ỹ) determined from

u2(ỹ) =
1

M − 1

M∑
r=1

(yr − ỹ)2 (18)

are taken, respectively, as an estimate y of Y and the
standard uncertainty u(y) associated with y.
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NOTE 1 Formula (18) should be used rather than the
mathematically equivalent formula

u2(ỹ) =
M

M − 1

(
1

M

M∑
r=1

y2
r − ỹ2

)
.

For the many circumstances in metrology in which u(y) is
much smaller than |y| (in which case the yr have a number of
leading decimal digits in common) the latter formula suffers
numerically from subtractive cancellation (involving a mean
square less a squared mean). This effect can be so severe
that the resulting numerical value might have too few correct
significant decimal digits for the uncertainty evaluation to be
valid [4].

NOTE 2 In some special circumstances, such as when one
of the input quantities has been assigned a PDF based on
the t-distribution with fewer than three degrees of freedom,
the expectation and standard deviation of Y , as described
by the PDF gY (η), might not exist. Formulae (17) and (18)
might not then provide meaningful results. A coverage inter-
val for Y (subclause 7.7) can, however, be formed, since G
is meaningful and can be determined.

NOTE 3 ỹ will not in general agree with the model
evaluated at the best estimates of the input quantities,
since, for a non-linear model f(X), E(Y ) = E(f(X)) 6=
f(E(X)) (cf. [GUM 4.1.4]). Irrespective of whether f is
linear or non-linear, in the limit as M tends to infinity, ỹ
approaches E(f(X)) when E(f(X)) exists.

7.7 Coverage interval for the output quan-
tity

7.7.1 A coverage interval for Y can be determined
from the discrete representation G of GY (η) in an anal-
ogous manner to that in subclause 5.3.2 given GY (η).

7.7.2 Let q = pM , if pM is an integer. Oth-
erwise, take q to be the integer part of pM + 1/2.
Then [ylow, yhigh] is a 100p % coverage interval for Y ,
where, for any r = 1, . . . ,M − q, ylow = y(r) and yhigh =
y(r+q). The probabilistically symmetric 100p % coverage
interval is given by taking r = (M − q)/2, if (M − q)/2
is an integer, or the integer part of (M−q+1)/2, other-
wise. The shortest 100p % coverage interval is given
by determining r∗ such that, for r = 1, . . . ,M − q,
y(r∗+q) − y(r∗) ≤ y(r+q) − y(r).

NOTE Because of the randomness in MCM, some of
these M − q interval lengths will be shorter than they would
be on average, and some longer. So, by choosing the least
such length, the (approximation to the) shortest 100p %
coverage interval tends to be marginally shorter than that
which would have been calculated from GY (η), with the
consequence that the typical coverage probability is less
than 100p %. For large M , this coverage probability is neg-
ligibly less than 100p %.

EXAMPLE 105 numbers were drawn from a pseudo-random
number generator for the rectangular distribution in the in-
terval [0, 1], and the shortest 95 % coverage interval formed

as above. This exercise was carried out 1 000 times. The
average coverage probability was 94.92 % and the standard
deviation of the 1 000 coverage probabilities 0.06 %.

7.8 Computation time

7.8.1 The computation time for MCM is dominated
by that required for the following three steps:

a) make M draws from the PDF for each input quan-
tity Xi (or the joint PDF for X);

b) make M corresponding evaluations of the model;

c) sort the resulting M model values into non-
decreasing order.

7.8.2 The times taken in the three steps are directly
proportional to (a) M , (b) M , and (c) M lnM (if an
efficient sort algorithm [45] is used).

7.8.3 If the model is simple and the input quantities
are independent, the time in step c) can be expected to
dominate, and the overall time taken is typically a few
seconds for M = 106 on a personal computer operating
at several GHz. Otherwise, let T1 be the time taken to
make one draw from the PDFs for the input quantities
and T2 that to make one evaluation of the model. Then,
the overall time can be taken as essentially M×(T1+T2),
or, if the model is complicated, as MT2.

NOTE 1 If the model is simple and M very large, e.g. 108

or 109, the sorting time may be excessive compared with the
time taken to make the M model evaluations. In such a
case, calculations can instead be based on an approximation
to gY (η) derived from a suitable histogram of the yr.

NOTE 2 An indication of the computation time required
for an application of MCM can be obtained as follows. Con-
sider an artificial problem with a model consisting of the sum
of five terms:

Y = cos X1 + sin X2 + tan−1 X3 + eX4 + X
1/3
5 .

Assign a Gaussian PDF to each input quantity Xi.
Make M = 106 Monte Carlo trials. The relative computa-
tion times for (a) generating 5M random Gaussian numbers,
(b) forming M model values and (c) sorting the M model
values were respectively 20 %, 20 % and 60 %, with a total
computation time of a few seconds on a personal computer
operating at several GHz.

7.9 Adaptive Monte Carlo procedure

7.9.1 General

A basic implementation of an adaptive Monte Carlo pro-
cedure involves carrying out an increasing number of
Monte Carlo trials until the various results of interest
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have stabilized in a statistical sense. A numerical re-
sult is deemed to have stabilized if twice the standard
deviation associated with it is less than the numerical
tolerance (subclause 7.9.2) associated with the standard
uncertainty u(y).

7.9.2 Numerical tolerance associated with a nu-
merical value

Let ndig denote the number of significant decimal digits
regarded as meaningful in a numerical value z. The nu-
merical tolerance δ associated with z is given as follows:

a) express z in the form c × 10`, where c is an ndig

decimal digit integer and ` an integer;

b) take

δ =
1
2
10`. (19)

EXAMPLE 1 The estimate of the output quantity for a
nominally 100 g measurement standard of mass [GUM 7.2.2]
is y = 100.021 47 g. The standard uncertainty u(y) =
0.000 35 g, both significant digits being regarded as meaning-
ful. Thus, ndig = 2 and u(y) can be expressed as 35×10−5 g,
and so c = 35 and ` = −5. Take δ = 1

2
× 10−5 g =

0.000 005 g.

EXAMPLE 2 As example 1 except that only one sig-
nificant decimal digit in u(y) is regarded as meaningful.
Thus, ndig = 1 and u(y) = 0.000 4 g = 4 × 10−4 g, giv-
ing c = 4 and ` = −4. Thus, δ = 1

2
× 10−4 g = 0.000 05 g.

EXAMPLE 3 In a temperature measurement, u(y) = 2 K.
Then, ndig = 1 and u(y) = 2×100 K, giving c = 2 and ` = 0.
Thus, δ = 1

2
× 100 K = 0.5 K.

7.9.3 Objective of adaptive procedure

The objective of the adaptive procedure given in sub-
clause 7.9.4 is to provide (a) an estimate y of Y , (b) an
associated standard uncertainty u(y), and (c) the end-
points ylow and yhigh of a coverage interval for Y corre-
sponding to a stipulated coverage probability such that
each of these four values can be expected to meet the
numerical tolerance required.

NOTE 1 By its stochastic nature, the procedure cannot be
guaranteed to provide such an interval.

NOTE 2 y and u(y) generally “converge” considerably
faster than ylow and yhigh with respect to the number of
Monte Carlo trials.

NOTE 3 Generally, the larger is the coverage probability,
the larger is the number of Monte Carlo trials required to
determine ylow and yhigh for a given numerical tolerance.

7.9.4 Adaptive procedure

A practical approach, involving carrying out a sequence
of applications of MCM, is as follows:

a) set ndig;

NOTE Normally ndig would be chosen to be 1 or 2.

b) set
M = max(100/(1− p), 104); (20)

NOTE 1 The term 100/(1 − p) is deliberately much
smaller than the minimum suggested in subclause 7.2.2,
because it relates to the number of Monte Carlo trials in
one of a sequence of applications of MCM. The term 104

is arbitrary, but has been found suitable in practice.

NOTE 2 To assist the determination of the shortest
coverage interval (subclause 7.7.2), M should be chosen
as a multiple of 1/(1− p). The choice (20) ensures this
to be the case for, e.g. p = 0.95 and p = 0.99.

c) set h = 1, denoting the first application of MCM in
the sequence;

d) carry out M Monte Carlo trials, as in subclauses 7.3
and 7.4;

e) use the M model values y1, . . . , yM so ob-
tained to calculate, as in subclauses 7.5–
7.7, y(h), u(y(h)), y

(h)
low and y

(h)
high as an estimate of Y ,

the associated standard uncertainty, and the left-
and right-hand endpoints of a 100p % coverage in-
terval, respectively, i.e. for the hth member of the
sequence;

f) if h = 1, increase h by one and return to step d);

g) calculate the average y of the esti-
mates y(1), . . . , y(h) of Y and the standard
deviation sy associated with this average, given by

y =
1
h

h∑
r=1

y(r),

s2
y =

1
h(h− 1)

h∑
r=1

(y(r) − y)2;

NOTE y can be regarded as a realization of a random
variable with standard deviation sy.

h) calculate the counterparts of these statistics
for u(y), ylow and yhigh;

i) use all h × M model values available so far to
form u(y);
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j) calculate the numerical tolerance δ associated
with u(y) as in subclause 7.9.2;

k) if any of 2sy, 2su(y), 2sylow and 2syhigh exceeds δ,
increase h by one and return to step d);

l) regard the overall computation as having stabilized,
and use all h×M model values obtained to calcu-
late y, u(y) and a 100p % coverage interval, as in
subclauses 7.5–7.7.

NOTE 1 The standard deviations formed in steps g) and h)

tend to reduce in a manner proportional to h−1/2 (cf. sub-
clause 5.9.6 note 2).

NOTE 2 In situations where a coverage interval is not re-
quired, the test for stabilization of the computation can be
based instead on 2sy and 2su(y) only.

NOTE 3 The factor “2” used in step k) is based on regard-
ing the averages as realizations of Gaussian variables, and
corresponds to a coverage probability of approximately 95 %.

NOTE 4 An alternative, non-adaptive approach for a 95 %
probabilistically symmetric coverage interval, which can be
obtained using the statistics of the binomial distribution [10],
is as follows. Select M = 105 or M = 106. Form the inter-
val [y(r), y(s)], where, for M = 105, r = 2 420 and s = 97 581,

or, for M = 106, r = 24 747 and s = 975 254. This interval
is a 95 % statistical coverage interval at the level of confi-
dence 0.99 [GUM C.2.30] [53], i.e. the coverage probability
will be no less than 95 % in at least 99 % of uses of MCM.
This result can be established using the statistics of the bi-
nomial distribution [10]. The average coverage probability
of such an interval will be (s− r)/(M + 1), which is greater
than 95 % by an amount that becomes smaller as M is in-
creased, viz. 95.16 % for M = 105 and 95.05 % for M = 106.
(There are other possibilities for r and s; they do not have
to sum to M + 1. A sufficient condition [10, section 2.6] is
that s− r satisfies

M∑
j=s−r

MCjp
j(1− p)M−j < 1− 0.99,

the best result being when this inequality is just satisfied.)
These results can be extended to other coverage probabilities
(and other choices of M).

8 Validation of results

8.1 Validation of the GUM uncertainty
framework using MCM

8.1.1 The GUM uncertainty framework can be ex-
pected to work well in many circumstances. However,
it is not always straightforward to determine whether
all the conditions for its application (subclauses 5.7
and 5.8) hold. Indeed, the degree of difficulty of doing
so would typically be considerably greater than that re-
quired to apply MCM, assuming suitable software were

available [8]. Therefore, since these circumstances can-
not readily be tested, any cases of doubt should be vali-
dated. Since the domain of validity for MCM is broader
than that for the GUM uncertainty framework, it is
recommended that both the GUM uncertainty frame-
work and MCM be applied and the results compared.
Should the comparison be favourable, the GUM uncer-
tainty framework could be used on this occasion and for
sufficiently similar problems in the future. Otherwise,
consideration should be given to using MCM or another
appropriate approach instead.

8.1.2 Specifically, it is recommended that the two
steps below and the following comparison process be
carried out:

a) apply the GUM uncertainty framework (possibly
with the law of propagation of uncertainty based on
a higher-order Taylor series approximation) (sub-
clause 5.6) to yield a 100p % coverage interval y±Up

for the output quantity, where p is the stipulated
coverage probability;

b) apply the adaptive Monte Carlo procedure (sub-
clause 7.9.4) to provide (approximations to) the
standard uncertainty u(y) and the endpoints ylow

and yhigh of the required (probabilistically symmet-
ric or shortest) 100p % coverage interval for the
output quantity. Also see subclause 8.2.

8.1.3 A comparison procedure has the following ob-
jective: determine whether the coverage intervals ob-
tained by the GUM uncertainty framework and MCM
agree to within a stipulated numerical tolerance. This
numerical tolerance is assessed in terms of the endpoints
of the coverage intervals and corresponds to that given
by expressing the standard uncertainty u(y) to what is
regarded as a meaningful number of significant decimal
digits (cf. subclause 7.9.2). The procedure is as follows:

a) form a numerical tolerance δ associated with u(y)
as described in subclause 7.9.2;

b) compare the coverage intervals obtained by
the GUM uncertainty framework and MCM to de-
termine whether the required number of correct
decimal digits in the coverage interval provided
by the GUM uncertainty framework has been ob-
tained. Specifically, determine

dlow = |y − Up − ylow|, (21)
dhigh = |y + Up − yhigh|, (22)

viz. the absolute differences of the respective end-
points of the two coverage intervals. Then, if
both dlow and dhigh are no larger than δ, the com-
parison is favourable and the GUM uncertainty
framework has been validated in this instance.
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NOTE The choice of 100p % coverage interval will influence
the comparison. Therefore, the validation applies for the
specified coverage probability p only.

8.2 Obtaining MCM results for validation
purposes

A sufficient number M of Monte Carlo trials (sub-
clause 7.2) should be performed in obtaining MCM
results for the validation purposes of subclause 8.1.
Let ndig denote the number of significant decimal dig-
its required in u(y) (subclause 7.9.1) when validating
the GUM uncertainty framework using MCM. Let δ de-
note the numerical tolerance associated with u(y) (sub-
clause 7.9.2). Then it is recommended that the adaptive
Monte Carlo procedure (subclause 7.9.4) be used to pro-
vide MCM results to a numerical tolerance of δ/5. Such
results can be obtained by replacing δ by δ/5 in step k)
of that procedure.

NOTE It can be expected that the use of a numerical tol-
erance of δ/5 would require a numerical value of M of the
order of 25 times that for a numerical tolerance of δ. Such a
numerical value of M might present efficiency problems for
some computers in operating with vector arrays of dimen-
sion M . In such a case, calculations can instead be based on
an approximation to gY (η) derived from a suitable histogram
of the yr, in which the cell frequencies in the histogram are
updated as the Monte Carlo calculation proceeds. Cf. sub-
clause 7.8.3 note 1.

9 Examples

9.1 Illustrations of aspects of this Supple-
ment

9.1.1 The examples given illustrate various aspects
of this Supplement. They show the application of
the GUM uncertainty framework with and without con-
tributions derived from higher-order terms in the Taylor
series approximation of the model function. They also
show the corresponding results provided by (a) MCM
using pre-assigned numbers M of Monte Carlo tri-
als, (b) the adaptive Monte Carlo procedure (sub-
clause 7.9.4) in which M is determined automatically,
or (c) both.

9.1.2 Some of the examples further show whether
the MCM results provided in (b) in subclause 9.1.1 val-
idate those provided by the GUM uncertainty frame-
work. A numerical tolerance δ (subclause 7.9.2) associ-
ated with u(y), with δ chosen appropriately, is used in
comparing MCM and the GUM uncertainty framework.
The Monte Carlo results provided in (b) were obtained
using a numerical tolerance of δ/5 (subclause 8.2). In
some instances, solutions are obtained analytically for

further comparison.

9.1.3 Results are generally reported in the manner
described in subclause 5.5. However, more than the rec-
ommended one or two significant decimal digits are of-
ten given to facilitate comparison of the results obtained
from the various approaches.

9.1.4 The Mersenne Twister generator [32] was used
to generate pseudo-random numbers from a rectangu-
lar distribution (subclause C.3.1.1). It passes a com-
prehensive test for pseudo-random numbers drawn from
a rectangular distribution [28] and is available within
MATLAB [34], the programming environment used to
produce the results given here.

9.1.5 The first example (subclause 9.2) constitutes
an additive model. It demonstrates that the results
from MCM agree with those from the application of
the GUM uncertainty framework when the conditions
hold for the latter (as in subclause 5.7). The same
model, but with different PDFs assigned to the input
quantities, is also considered to demonstrate some de-
partures when not all the conditions hold.

9.1.6 The second example (subclause 9.3) is a cali-
bration problem from mass metrology. It demonstrates
that the GUM uncertainty framework is valid in this
instance only if the contributions derived from higher-
order terms in the Taylor series approximation of the
model function are included.

9.1.7 The third example (subclause 9.4) is concerned
with electrical measurement. It shows that the PDF for
the output quantity can be markedly asymmetric, and
thus the GUM uncertainty framework can yield invalid
results, even if all higher-order terms are taken into ac-
count. Instances where the input quantities are inde-
pendent and not independent are treated.

9.1.8 The fourth example (subclause 9.5) is that
in the GUM concerned with gauge block calibra-
tion [GUM H.1]. The information given there concern-
ing the model input quantities is interpreted, PDFs ac-
cordingly assigned to these quantities, and results from
the GUM uncertainty framework and MCM obtained
and compared. Moreover, this treatment is applied both
to the original model and the approximation made to it
in the GUM.
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9.2 Additive model

9.2.1 Formulation

This example considers the additive model

Y = X1 + X2 + X3 + X4, (23)

a special case of the generic linear model considered
in the GUM, for three different sets of PDFs gXi

(ξi)
assigned to the input quantities Xi, regarded as inde-
pendent. The Xi and hence the output quantity Y
have dimension 1. For the first set, each gXi

(ξi) is a
standard Gaussian PDF (with Xi having expectation
zero and standard deviation unity). For the second set,
each gXi

(ξi) is a rectangular PDF, also with Xi hav-
ing expectation zero and standard deviation unity. The
third set is identical to the second except that the PDF
for gX4(ξ4) has a standard deviation of ten.

NOTE Further information concerning additive models,
such as the model (23), where the PDFs are Gaussian or
rectangular or a combination of both, is available [13].

9.2.2 Normally distributed input quantities

9.2.2.1 Assign a standard Gaussian PDF to each Xi.
The best estimates of the Xi are xi = 0, i = 1, 2, 3, 4,
with associated standard uncertainties u(xi) = 1.

9.2.2.2 The law of propagation of uncer-
tainty [GUM 5.1.2] gives the estimate y = 0.0 of Y
and associated standard uncertainty u(y) = 2.0, using
a numerical tolerance of two significant decimal digits
for u(y) (δ = 0.05) (subclause 5.5). A probabilistically
symmetric 95 % coverage interval for Y , based on a
coverage factor of 1.96, is [−3.9, 3.9].

9.2.2.3 The application of MCM (clause 7)
with M = 105 trials gives y = 0.0, u(y) = 2.0 and
the probabilistically symmetric 95 % coverage inter-
val [−3.9, 3.9]. Two further applications of the method,
with M = 106 trials, agree with these results to within
the numerical tolerance used. These two further appli-
cations (different random samplings being made from
the PDFs) were made to demonstrate the variation in
the results obtained. The fourth and fifth numerical
values of M (= 1.25 × 106 and = 1.09 × 106) are the
numbers of trials for two applications of the adaptive
Monte Carlo procedure (subclause 7.9) with the use of
a numerical tolerance of δ/5 (subclause 8.2).

9.2.2.4 The PDF for Y obtained analytically is the
Gaussian PDF with expectation zero and standard de-
viation two.

9.2.2.5 The results obtained are summarized in the
first five columns of table 2, with the results reported
to three significant figures in order to facilitate their
comparison (subclause 9.1.3).

NOTE The probabilistically symmetric 95 % coverage in-
terval is determined, because the PDF for Y is known to be
symmetric in this case, as it is for the other cases considered
in this example.

9.2.2.6 Figure 6 shows the (Gaussian) PDF for Y
resulting from the GUM uncertainty framework. It
also shows one of the approximations (scaled frequency
distribution (histogram) of M = 106 model values
of Y ) constituting the discrete representation G (sub-
clause 7.5) to this PDF provided by MCM. The end-
points of the probabilistically symmetric 95 % coverage
interval provided by both methods are shown as vertical
lines. The PDF and the approximation are visually in-
distinguishable, as are the respective coverage intervals.
For this example, such agreement would be expected
(for a sufficiently large numerical value of M), because
all the conditions hold for the application of the GUM
uncertainty framework (subclause 5.7).

Figure 6 — Approximations for the model (23),

with each Xi assigned a standard Gaussian PDF,

to the PDF for Y provided by (a) the GUM uncer-

tainty framework and (b) MCM (subclause 9.2.2.6).

“Unit” denotes any unit.

9.2.2.7 Columns 6–8 of table 2 also shows the re-
sults of applying the validation procedures of sub-
clauses 8.1 and 8.2. Using the terminology of sub-
clause 7.9.2, ndig = 2, since two significant decimal dig-
its in u(y) are sought. Hence, u(y) = 2.0 = 20 × 10−1,
and so c = 20 and ` = −1. Thus, according to sub-
clause 7.9.2, the numerical tolerance is

δ =
1
2
× 10−1 = 0.05.
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Table 2 — The application to the model (23), with each Xi assigned a standard Gaussian PDF, of (a) the GUM

uncertainty framework (GUF), (b) MCM, and (c) an analytical approach (subclause 9.2.2.3).

Method M y u(y) Probabilistically symmetric dlow dhigh GUF validated
95 % coverage interval (δ = 0.05)?

GUF 0.00 2.00 [–3.92, 3.92]
MCM 105 –0.01 1.98 [–3.92, 3.88]
MCM 106 0.00 2.00 [–3.92, 3.93]
MCM 106 0.00 2.00 [–3.92, 3.92]

Adaptive MCM 1.25× 106 0.00 2.00 [–3.92, 3.92] 0.00 0.00 Yes
Adaptive MCM 1.09× 106 0.00 2.00 [–3.92, 3.92] 0.00 0.00 Yes

Analytical 0.00 2.00 [–3.92, 3.92]

The magnitudes dlow and dhigh of the endpoint differ-
ences (expressions (21) and (22)) are shown in table 2
for the two applications of the adaptive Monte Carlo
procedure. Also shown is whether the GUM uncertainty
framework has been validated for δ = 0.05.

9.2.2.8 Figure 7 shows the length yhigh − ylow of
the 95 % coverage interval for Y (subclause 7.7), as a
function of the probability at its left-hand endpoint, de-
termined from G. As expected for a symmetric PDF,
the interval takes its shortest length when symmetrically
located with respect to the expectation.

Figure 7 — The length of the 95 % coverage inter-

val, as a function of the probability at its left-hand

endpoint, for the discrete representation G of the

distribution function obtained by applying MCM to

the model (23) (subclause 9.2.2.8).

9.2.2.9 Subclause 9.4 provides an example of an
asymmetric PDF for which the shortest coverage inter-
val differs appreciably from the probabilistically sym-
metric coverage interval.

9.2.3 Rectangularly distributed input quanti-
ties with the same width

9.2.3.1 Assign a rectangular PDF to each Xi, so
that Xi has an expectation of zero and a standard devi-
ation of unity (in contrast to subclause 9.2.2.1 where a
Gaussian PDF is assigned). Again, the best estimates of
the Xi are xi = 0, i = 1, 2, 3, 4, with associated standard
uncertainties u(xi) = 1.

9.2.3.2 By following the analogous steps of sub-
clauses 9.2.2.2–9.2.2.4, the results in table 3 were ob-
tained. The analytic solution for the endpoints of
the probabilistically symmetric 95 % coverage interval,
viz. ±2

√
3(2 − (3/5)1/4) ≈ ±3.88, was obtained as de-

scribed in annex E.

9.2.3.3 Figure 8 shows the counterpart of figure 6
in this case. By comparison with figure 6, some mod-
est differences between the approximations to the PDFs
can be seen. The GUM uncertainty framework provides
exactly the same PDF for Y when the PDFs for the Xi

are Gaussian or rectangular, because the expectations of
these quantities are identical, as are the standard devi-
ations, in the two cases. The PDF provided by MCM is
less than that provided by the GUM uncertainty frame-
work in the neighbourhood of the expectation and to a
smaller extent towards the tails. It is slightly greater in
the flanks. The endpoints of the coverage intervals pro-
vided are again almost visually indistinguishable, but
table 3 shows small differences.

9.2.3.4 The probabilistically symmetric 95 % cover-
age interval determined on the basis of the GUM un-
certainty framework is in this case slightly more con-
servative than that obtained analytically. As for nor-
mally distributed quantities, the validation procedure
was applied (columns 6–8 of table 3). As before, ndig =
2, u(y) = 20 × 10−1, c = 20, ` = −1 and δ = 0.05.
For the two applications of the adaptive Monte Carlo
method, the GUM uncertainty framework is validated,
although the endpoint differences are larger than for the
case of normally distributed quantities (table 2).
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Table 3 — As table 2, but for rectangular PDFs, with the Xi having the same expectations and standard

deviations (subclause 9.2.3.2.

Method M y u(y) Probabilistically symmetric dlow dhigh GUF validated
95 % coverage interval (δ = 0.05)?

GUF 0.00 2.00 [–3.92, 3.92]
MCM 105 0.00 1.99 [–3.88, 3.86]
MCM 106 0.00 2.00 [–3.88, 3.88]
MCM 106 0.00 2.00 [–3.88, 3.87]

Adaptive MCM 1.07× 106 0.00 2.00 [–3.89, 3.88] 0.03 0.04 Yes
Adaptive MCM 0.89× 106 0.00 2.00 [–3.88, 3.88] 0.04 0.04 Yes

Analytical 0.00 2.00 [–3.88, 3.88]

Figure 8 — The counterpart of figure 6 for quanti-

ties having the same expectations and standard de-

viations (subclause 9.2.3.3), but rectangular PDFs.

9.2.4 Rectangularly distributed input quanti-
ties with different widths

9.2.4.1 Consider the example of subclause 9.2.3, ex-
cept that X4 has a standard deviation of ten rather than
unity. Table 4 contains the results obtained.

9.2.4.2 The numbers M of Monte Carlo trials taken
by the adaptive procedure (0.05×106 and 0.06×106) are
much smaller than they were for the two previous cases
in this example. The main reason is that, in this case,
δ = 0.5, the numerical tolerance resulting from request-
ing, as before, two significant decimal digits in u(y), is
ten times the previous value. Were the previous value to
be used, M would be of the order of 100 times greater.

9.2.4.3 Figure 9 shows the two approximations ob-
tained to the PDF for Y . They have very different ap-
pearance. The dominance of the PDF for X4 is evi-
dent. The PDF for Y resembles that for X4, but there
is an effect in the flanks resulting from the PDFs for the
other Xi.

9.2.4.4 Figure 9 also shows the endpoints of the
probabilistically symmetric 95 % coverage interval for Y
obtained from these approximations. The inner pair
of vertical lines indicates the endpoints of the proba-
bilistically symmetric 95 % coverage interval determined
by MCM. The outer pair results from the GUM uncer-
tainty framework, with a coverage factor of k = 1.96.

Figure 9 — As figure 8, except that the fourth input

quantity has a standard deviation of ten rather than

unity (subclause 9.2.4.3).

9.2.4.5 The probabilistically symmetric 95 % cov-
erage interval determined on the basis of the GUM
uncertainty framework in this case is more conserva-
tive than that obtained using MCM. Again, the vali-
dation procedure was applied (columns 6–8 of table 4).
Now, ndig = 2, u(y) = 1.0×101 = 10×100, c = 10, ` = 0
and δ = 1/2×100 = 0.5. For the two applications of the
adaptive Monte Carlo procedure, the GUM uncertainty
framework is not validated. For a numerical tolerance
of one significant decimal digit in u(y), i.e. ndig = 1,
for which δ = 5, the validation status would be posi-
tive in both cases, the 95 % coverage intervals all be-
ing [−2× 101, 2× 101]. See subclause 4.14.

NOTE The conditions for the central limit theorem to apply
are not well met in this circumstance [GUM G.6.5], because
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Table 4 — As table 3, except that the fourth input quantity has a standard deviation of ten rather than unity,

and no analytic solution is provided (subclause 9.2.4.1).

Method M y u(y) Probabilistically symmetric dlow dhigh GUF validated
95 % coverage interval (δ = 0.5)?

GUF 0.0 10.1 [–19.9, 19.9]
MCM 105 0.0 10.1 [–17.0, 17.0]
MCM 106 0.0 10.1 [–17.0, 17.0]
MCM 106 0.0 10.2 [–17.0, 17.0]

Adaptive MCM 0.05× 106 0.1 10.2 [–17.0, 17.1] 2.9 2.8 No
Adaptive MCM 0.06× 106 0.0 10.1 [–17.1, 17.0] 2.8 2.9 No

of the dominating effect of the rectangular PDF for X4 (sub-
clause 5.7.2). However, because these conditions are often in
practice assumed to hold, especially when using proprietary
software for uncertainty evaluation (cf. subclause 9.4.2.5
note 3), the characterization of Y by a Gaussian PDF on
the assumption of the applicability of this theorem is made
in this subclause for comparison purposes.

9.3 Mass calibration

9.3.1 Formulation

9.3.1.1 Consider the calibration of a weight W of
mass density ρW against a reference weight R of mass
density ρR having nominally the same mass, using a bal-
ance operating in air of mass density ρa [37]. Since ρW

and ρR are generally different, it is necessary to account
for buoyancy effects. Applying Archimedes’ principle,
the model takes the form

mW(1− ρa/ρW) = (mR + δmR)(1− ρa/ρR), (24)

where δmR is the mass of a small weight of density ρR

added to R to balance it with W.

9.3.1.2 It is usual to work in terms of conventional
masses. The conventional mass mW,c of W is the mass of
a (hypothetical) weight of density ρ0 = 8 000 kg/m3 that
balances W in air at density ρa0 = 1.2 kg/m3. Thus,

mW(1− ρa0/ρW) = mW,c(1− ρa0/ρ0).

9.3.1.3 In terms of conventional masses mW,c, mR,c

and δmR,c, the model (24) becomes

mW,c(1− ρa/ρW)(1− ρa0/ρW)−1 =
(mR,c + δmR,c)(1− ρa/ρR)(1− ρa0/ρR)−1, (25)

from which, to an approximation adequate for most
practical purposes,

mW,c = (mR,c + δmR,c)
[
1 + (ρa − ρa0)

(
1

ρW
− 1

ρR

)]
.

Let
δm = mW,c −mnom

be the deviation of mW,c from the nominal mass

mnom = 100 g.

The model used in this example is given by

δm = (mR,c + δmR,c)
[
1 + (ρa − ρa0)

(
1

ρW
− 1

ρR

)]
− mnom. (26)

NOTE Applying the law of propagation of uncertainty to the
“exact” model (25) is made difficult by the algebraic com-
plexity of the partial derivatives. It is easier to apply MCM,
because only model values need be formed.

9.3.1.4 The only information available concern-
ing mR,c and δmR,c is a best estimate and an associ-
ated standard uncertainty for each of these quantities.
Accordingly, following subclause 6.4.7.1, a Gaussian dis-
tribution is assigned to each of these quantities, with
these best estimates used as the expectations of the cor-
responding quantities and the associated standard un-
certainties as the standard deviations. The only infor-
mation available concerning ρa, ρW and ρR is lower and
upper limits for each of these quantities. Accordingly,
following subclause 6.4.2.1, a rectangular distribution is
assigned to each of these quantities, with limits equal
to the endpoints of the distribution. Table 5 summa-
rizes the input quantities and the PDFs assigned. In the
table, a Gaussian distribution N(µ, σ2) is described in
terms of expectation µ and standard deviation σ, and a
rectangular distribution R(a, b) with endpoints a and b
(a < b) in terms of expectation (a + b)/2 and semi-
width (b− a)/2.

NOTE The quantity ρa0 in the mass calibration model (26)
is assigned the value 1.2 kg/m3 with no associated uncer-
tainty.

9.3.2 Propagation and summarizing

9.3.2.1 The GUM uncertainty framework and the
adaptive Monte Carlo procedure (subclause 7.9) were
each used to obtain an estimate δm̂ of δm, the associated
standard uncertainty u(δm̂), and the shortest 95 % cov-
erage interval for δm. The results obtained are shown in
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Table 5 — The input quantities Xi and the PDFs assigned to them for the mass calibration model (26)

(subclause 9.3.1.4).

Parameters
Xi Distribution ——————————————————————————–

Expectation Standard Expectation Semi-width
µ deviation σ x = (a + b)/2 (b− a)/2

mR,c N(µ, σ2) 100 000.000 mg 0.050 mg
δmR,c N(µ, σ2) 1.234 mg 0.020 mg

ρa R(a, b) 1.20 kg/m3 0.10 kg/m3

ρW R(a, b) 8× 103 kg/m3 1× 103 kg/m3

ρR R(a, b) 8.00× 103 kg/m3 0.05× 103 kg/m3

table 6, in which GUF1 denotes the GUM uncertainty
framework with first-order terms, MCM the adaptive
Monte Carlo procedure, and GUF2 the GUM uncer-
tainty framework with higher-order terms.

9.3.2.2 0.72× 106 trials were taken by the adaptive
Monte Carlo procedure with the use of a numerical tol-
erance of δ/5 (subclause 8.2) with δ set for the case
where one significant decimal digit in u(δm̂) is regarded
as meaningful (subclause 9.3.2.6).

9.3.2.3 Figure 10 shows the approximations to
the PDF for δm obtained from the GUM uncertainty
framework with first-order terms and MCM. The con-
tinuous curve represents a Gaussian PDF with parame-
ters given by the GUM uncertainty framework. The
inner pair of (broken) vertical lines indicates the short-
est 95 % coverage interval for δm based on this PDF.
The histogram is the scaled frequency distribution ob-
tained using MCM as an approximation to the PDF.
The outer pair of (continuous) vertical lines indicates
the shortest 95 % coverage interval for δm based on the
discrete representation of the distribution function de-
termined as in subclause 7.5.

9.3.2.4 The results show that, although the GUM
uncertainty framework (first order) and MCM give es-
timates of δm in good agreement, the numerical val-
ues for the associated standard uncertainty are notice-
ably different. The value (0.075 5 mg) of u(δm̂) re-
turned by MCM is 40 % larger than that (0.053 9 mg)
returned by the GUM uncertainty framework (first or-
der). The latter is thus optimistic in this respect. There
is good agreement between u(δm̂) determined by MCM
and that (0.075 0 mg) provided by the GUM uncertainty
framework with higher-order terms.

9.3.2.5 Table 7 contains the partial derivatives of
first order for the model (26) with respect to the input
quantities together with the sensitivity coefficients, viz.
these derivatives evaluated at the best estimates of the
input quantities. These derivatives indicate that, for
the purposes of the GUM uncertainty framework with
first-order terms, the model for this example can be con-

Figure 10 — Approximations to the PDF for the

output quantity δm obtained using the GUM uncer-

tainty framework with first-order terms and MCM

(subclause 9.3.2.3).

sidered as being replaced by the additive model

δm = mR,c + δmR,c −mnom.

MCM makes no such (implied) approximation to the
model.

Table 7 — Sensitivity coefficients for the mass cali-

bration model (26) (subclause 9.3.2.5).

Xi Partial derivative Sensitivity
coefficient

mR,c 1 + (ρa − ρa0)(1/ρW − 1/ρR) 1
δmR,c 1 + (ρa − ρa0)(1/ρW − 1/ρR) 1

ρa (mR,c + δmR,c)(1/ρW − 1/ρR) 0
ρW −(mR,c + δmR,c)(ρa − ρa0)/ρ2

W 0
ρR (mR,c + δmR,c)(ρa − ρa0)/ρ2

R 0

9.3.2.6 Table 6 also shows in the right-most three
columns the results of applying the validation proce-
dure of subclause 8.1 in the case where one significant
decimal digit in u(δm̂) is regarded as meaningful. Us-
ing the terminology of that subclause, ndig = 1, since
a numerical tolerance of one significant decimal digit
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Table 6 — Results of the calculation stage for the mass calibration model (26) (subclause 9.3.2.1).

Method δm̂ u(δm̂) Shortest 95 % dlow dhigh GUF validated
/mg /mg coverage interval /mg /mg /mg (δ = 0.005)?

GUF1 1.234 0 0.053 9 [1.128 4, 1.339 6] 0.045 3 0.042 6 No
MCM 1.234 1 0.075 4 [1.083 1, 1.382 2]
GUF2 1.234 0 0.075 0 [1.087 0, 1.381 0] 0.003 9 0.001 2 Yes

in u(δm̂) is required. Hence, u(δm̂) = 0.08 = 8× 10−2,
and so the c in subclause 7.9.2 equals 8 and ` = −2.
Thus δ = 1/2×10−2 = 0.005. dlow and dhigh denote the
magnitudes of the endpoint differences (21) and (22),
where y there corresponds to δm̂. Whether the results
were validated to one significant decimal digit in u(δm̂)
is indicated in the final column of the table. If only
first-order terms are accounted for, the application of
the GUM uncertainty framework is not validated. If
higher-order terms are accounted for [GUM 5.1.2 note],
the GUM uncertainty framework is validated. Thus,
the non-linearity of the model is such that accounting
for first-order terms only is inadequate.

9.4 Comparison loss in microwave power
meter calibration

9.4.1 Formulation

9.4.1.1 During the calibration of a microwave power
meter, the power meter and a standard power meter
are connected in turn to a stable signal generator. The
power absorbed by each meter will in general be differ-
ent because their complex input voltage reflection coef-
ficients are not identical. The ratio Y of the power PM

absorbed by the meter being calibrated and that, PS, by
the standard meter is [41]

Y =
PM

PS
=

1− |ΓM|2

1− |ΓS|2
× |1− ΓSΓG|2

|1− ΓMΓG|2
, (27)

where ΓG is the voltage reflection coefficient of the sig-
nal generator, ΓM that of the meter being calibrated
and ΓS that of the standard meter. This power ratio is
an instance of “comparison loss” [1, 26].

9.4.1.2 Consider the case where the standard and the
signal generator are reflectionless, i.e. ΓS = ΓG = 0, and
measured values are obtained of the real and imaginary
parts X1 and X2 of ΓM = X1 + jX2, where j2 = −1.
Since |ΓM|2 = X2

1 + X2
2 , formula (27) becomes

Y = 1−X2
1 −X2

2 . (28)

9.4.1.3 Given respectively are best estimates x1

and x2 of the quantities X1 and X2 from measure-
ment and the associated standard uncertainties u(x1)
and u(x2). X1 and X2 are often not indepen-
dent. Denote by u(x1, x2) the covariance associated

with x1 and x2. Equivalently [GUM 5.2.2], u(x1, x2) =
r(x1, x2)u(x1)u(x2), where r = r(x1, x2) denotes the as-
sociated correlation coefficient [GUM 5.2.2].

NOTE In practice the electrical engineer may sometimes
have difficulty in quantifying the covariance. In such cases,
the uncertainty evaluation can be repeated with different
trial numerical values for the correlation coefficient in order
to study its effect. This example carries out calculations
using a correlation coefficient of zero and of 0.9 (cf. sub-
clause 9.4.1.7).

9.4.1.4 On the basis of subclause 6.4.8.1, X =
(X1, X2)T is assigned a bivariate Gaussian PDF in X1

and X2, with expectation and covariance matrix[
x1

x2

]
,

[
u2(x1) ru(x1)u(x2)

ru(x1)u(x2) u2(x2)

]
. (29)

9.4.1.5 Because the magnitudes of X1 and X2 in ex-
pression (28) are in practice small compared with unity,
the resulting Y is close to unity. Results are accordingly
expressed in terms of the quantity

δY = 1− Y = X2
1 + X2

2 , (30)

taken as the model of measurement. For physical rea-
sons, 0 ≤ Y ≤ 1, and hence 0 ≤ δY ≤ 1.

9.4.1.6 The determination of an estimate δy of δY ,
the associated standard uncertainty u(δy), and a cover-
age interval for δY will be considered for choices of x1,
x2, u(x1), u(x2) and r(x1, x2). All quantities have di-
mension one.

9.4.1.7 Six cases are considered, in all of which x2

is taken as zero and u(x1) = u(x2) = 0.005. The
first three of these cases correspond to taking x1 = 0,
0.010, and 0.050, each with r(x1, x2) = 0. The other
three cases correspond to taking the same x1, but
with r(x1, x2) = 0.9. The various numerical values of x1

(comparable to those occurring in practice) are used to
investigate the extent to which the results obtained us-
ing the considered approaches differ.

9.4.1.8 For the cases in which r = r(x1, x2) = 0,
the covariance matrix given in formulae (29) reduces
to diag(u2(x1), u2(x2)) and the corresponding joint dis-
tribution for X1 and X2 to the product of two univariate
Gaussian distributions for Xi, for i = 1, 2, with expec-
tation xi and standard deviation u(xi).
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9.4.2 Propagation and summarizing: zero co-
variance

9.4.2.1 General

9.4.2.1.1 The evaluation of uncertainty is treated by
applying the propagation of distributions (a) analyti-
cally (for purposes of comparison), (b) using the GUM
uncertainty framework, and (c) using MCM.

9.4.2.1.2 δy and u(δy) can generally be formed an-
alytically as the expectation and standard deviation
of δY , as characterized by the PDF for δY . See sub-
clause F.1. The PDF for δY can be formed analytically
when x1 = 0 and, in particular, used to determine the
endpoints of the shortest 95 % coverage interval in that
case. See subclause F.2.

9.4.2.1.3 The GUM uncertainty framework with
first-order terms and with higher-order terms is applied
for each of the three estimates x1 in the uncorrelated
case. See subclause F.3. An estimate δy of δY is formed
in each case [GUM 4.1.4] from

δy = x2
1 + x2

2.

9.4.2.1.4 MCM is applied in each case with M = 106

trials.

NOTE These approaches do not constrain the PDF for δY
to be no greater than unity. However, for sufficiently small
uncertainties u(x1) and u(x2), as here, the PDF for δY may
adequately be approximated by a simpler PDF defined over
all non-negative values of δY . A rigorous treatment, using
Bayesian inference [49], which applies regardless of the mag-
nitudes of u(x1) and u(x2), is possible, but beyond the scope
of this Supplement.

9.4.2.2 Input estimate x1 = 0

9.4.2.2.1 For the input estimate x1 = 0, higher-order
terms must be used when applying the law of prop-
agation of uncertainty, because the partial derivatives
of δY with respect to X1 and X2, evaluated at X1 = x1

and X2 = x2, are identically zero when x1 = x2 = 0.
Thus, if the law of propagation of uncertainty with first-
order terms only were applied, the resulting standard
uncertainty would incorrectly be computed as zero.

NOTE A similar difficulty would arise for x1 close to zero.

9.4.2.2.2 Figure 11 shows the PDFs for δY de-
termined by applying the propagation of distributions
(a) analytically (the exponentially decreasing curve
for δY ≥ 0 and zero elsewhere), (b) using the GUM
uncertainty framework with higher-order terms in order
to characterize the output quantity by a Gaussian PDF

(bell-shaped curve), and (c) using MCM (scaled fre-
quency distribution).

Figure 11 — Results for the model of comparison loss

in power meter calibration in the case x1 = x2 = 0,

with u(x1) = u(x2) = 0.005 and r(x1, x2) = 0 (sub-

clause 9.4.2.2.2).

9.4.2.2.3 It is seen in the figure that the use of
the GUM uncertainty framework with higher-order
terms in order to characterize the output quantity by a
Gaussian distribution yields a PDF that is very different
from the analytic solution. The latter takes the form of a
particular chi-squared distribution—the sum of squares
of two standard Gaussian variables (subclause F.2).

9.4.2.2.4 Since the partial derivatives of the model
function (30) of order higher than two are all identically
zero, the solution obtained essentially corresponds to
taking all Taylor-series terms, i.e. the full non-linearity
of the problem, into account. Thus, the particular
Gaussian distribution so determined is the best that is
possible using the GUM uncertainty framework to char-
acterize the output quantity by such a distribution.

9.4.2.2.5 It can therefore be concluded that the rea-
son for the departure from the analytic solution of the
results of the use of the approach based on the GUM
uncertainty framework is that the output quantity is
characterized by a Gaussian PDF. No Gaussian PDF,
however it is obtained, could adequately represent the
analytic solution in this case.

9.4.2.2.6 It is also seen in figure 11 that the PDF
provided by MCM is consistent with the analytic solu-
tion.

9.4.2.2.7 The estimates δy determined as the expec-
tation of δY described by the PDFs obtained (a) analyt-
ically, (b) using the GUM uncertainty framework, and
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(c) applying MCM are given in columns 2–4 of the row
corresponding to x1 = 0.000 in table 8. Columns 5–8
contain the corresponding u(δy), with those obtained
using the GUM uncertainty framework with first-order
terms (G1) and higher-order terms (G2).

9.4.2.2.8 The estimate δy = 0 obtained by evalu-
ating the model at the input estimates is invalid: the
correct (analytic) gδY (η) is identically zero for δY < 0;
this estimate lies on the boundary of the non-zero part
of that function. The estimate provided by MCM agrees
with that obtained analytically. The law of propa-
gation of uncertainty based on first-order terms gives
the wrong, zero, value for u(δy) already noted. The
value (50 × 10−6) from the law of propagation of un-
certainty based on higher-order terms agrees with that
obtained analytically and by MCM.

NOTE When MCM was repeated several times the results
obtained were scattered about 50 × 10−6. When it was re-
peated a number of times with a larger numerical value of M
the results were again scattered about 50× 10−6, but with a
reduced dispersion. Such dispersion effects are expected, and
were observed for the other Monte Carlo calculations made.
Reporting the results to greater numbers of significant dec-
imal digits would be necessary to see the actual numerical
differences.

9.4.2.2.9 Figure 11 also shows the shortest 95 % cov-
erage intervals for the corresponding approximations to
the distribution function for δY . The 95 % coverage
interval, indicated by dotted vertical lines, as provided
by the GUM uncertainty framework is infeasible: it is
symmetric about δY = 0 and therefore erroneously im-
plies there is a 50 % probability that δY is negative.
The continuous vertical lines are the endpoints of the
shortest 95 % coverage interval derived from the ana-
lytic solution, as described in subclause F.2. The end-
points of the shortest 95 % coverage interval determined
using MCM are indistinguishable to graphical accuracy
from those for the analytic solution.

9.4.2.2.10 The endpoints of the shortest cover-
age intervals relating to the standard uncertainties in
columns 5–8 of the row corresponding to x1 = 0.000 in
table 8 are given in columns 9–12 of that table.

9.4.2.2.11 Figure 12 shows the length of the 95 %
coverage interval (subclause 7.7), as a function of the
probability value at its left-hand endpoint, for the ap-
proximation to the PDF provided by MCM shown in
figure 11. The 95 % coverage interval does not take
its shortest length when symmetrically located with re-
spect to the expectation in this case. Indeed, the short-
est 95 % coverage interval is as far-removed as possible
from a probabilistically symmetric coverage interval, the
left and right tail probabilities being 0 % and 5 %, re-
spectively, as opposed to 2.5 % and 2.5 %. This figure

can be compared with that (figure 7) for the additive
model of subclause 9.2, for which the PDF for Y is sym-
metric about its expectation.

Figure 12 — The length of the 95 % coverage in-

terval, as a function of the probability value at its

left-hand endpoint, for the approximation to the dis-

tribution function obtained by applying MCM to the

model (30) (subclause 9.4.2.2.11).

9.4.2.3 Input estimate x1 = 0.010

9.4.2.3.1 For the input estimate x1 = 0.010, with
correlation coefficient r(x1, x2) = 0, figure 13 shows
the PDFs obtained using the GUM uncertainty frame-
work with first-order terms only and with higher-order
terms, and using MCM.

9.4.2.3.2 The PDF provided by MCM exhibits a
modest left-hand flank, although it is truncated at zero,
the smallest possible numerical value of δY . Further,
compared with the results for x1 = 0, it is closer
in form to the Gaussian PDFs provided by the GUM
uncertainty framework. These Gaussian PDFs are in
turn reasonably close to each other, δY having expec-
tation 1.0 × 10−4 and standard deviations 1.0 × 10−4

and 1.1× 10−4, respectively.

9.4.2.3.3 Figure 13 also shows the endpoints of the
shortest 95 % coverage intervals obtained by the three
approaches. The continuous vertical lines denote the
endpoints of the interval provided by MCM, the broken
vertical lines those resulting from the GUM uncertainty
framework with first-order terms, and the dotted ver-
tical lines from the GUM uncertainty framework with
higher-order terms. The intervals provided by the GUM
uncertainty framework are shifted to the left compared
with the shortest 95 % coverage interval for MCM. As a
consequence, they again include infeasible values of δY .
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Table 8 — Comparison loss results, for input estimates with associated zero covariance, obtained analyti-

cally (A), and using the GUM uncertainty framework with first-order terms (G1) and higher-order terms (G2)

and MCM (M) (subclause 9.4.2.2.7).

Estimate Standard uncertainty Shortest 95 % coverage interval for
x1 δy /10−6 u(δy) /10−6 δY /10−6

A G M A G1 G2 M A G1 G2 M
0.000 50 0 50 50 0 50 50 [0, 150] [0, 0] [–98, 98] [0, 150]
0.010 150 100 150 112 100 112 112 — [–96, 296] [–119, 319] [0, 366]
0.050 2 550 2 500 2 551 502 500 502 502 — [1 520, 3 480] [1 515, 3 485] [1 597, 3 551]

Figure 13 — As figure 11 except that x1 = 0.010,

and the PDFs resulting from the GUM uncertainty

framework with first-order (higher-peaked curve)

and with higher-order terms (lower-peaked curve)

(subclause 9.4.2.3.1).

The shift is about 70 % of the standard uncertainty. The
interval provided by MCM has its left-hand endpoint at
zero, the smallest feasible value.

9.4.2.3.4 The corresponding results are given in the
penultimate row of table 8.

9.4.2.4 Input estimate x1 = 0.050

9.4.2.4.1 Figure 14 is similar to figure 13, but
for x1 = 0.050. Now, the PDFs provided by both vari-
ants of the GUM uncertainty framework are virtually
indistinguishable from each other. Further, they are
now much closer to the approximation to the PDF pro-
vided by MCM. That PDF exhibits a slight skewness,
as evidenced in the tail regions. The coverage intervals
provided by the two variants of the GUM uncertainty
framework are visually almost identical, but still shifted
from those for MCM. The shift is now about 10 % of
the standard uncertainty. The intervals provided by
the GUM uncertainty framework are now feasible.

Figure 14 — As figure 13 except that x1 = 0.050 (sub-

clause 9.4.2.4.1).

9.4.2.4.2 The corresponding results are given in the
final row of table 8.

9.4.2.5 Discussion

As x1 becomes increasingly removed from zero, the re-
sults given by the GUM uncertainty framework, with
first-order and with higher-order terms, and those
for MCM become closer to each other.

NOTE 1 The numerical values x1 = x2 = 0 lie in the cen-
tre of the region of interest to the electrical engineer, corre-
sponding to the so-called “matched” condition for the power
meter being calibrated, and thus in no sense constitute an
extreme case.

NOTE 2 Because of the symmetry of the model in X1

and X2, exactly the same effect would occur were x2 used in
place of x1.

NOTE 3 One reason why the GUM uncertainty framework
with first-order terms (only) might be used in practice is that
software for its implementation is readily available: results
obtained from it might sometimes be accepted without ques-
tion. For the case where x1 = x2 = 0 (figure 11), the danger
would be apparent because the standard uncertainty u(δy)
was computed as zero, and consequently any coverage inter-
val for δY would be of zero length for any coverage prob-
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ability. For x1 6= 0 (or x2 6= 0), u(δy) and the length of
the coverage interval for δY are both non-zero, so no such
warning would be available without prior knowledge of likely
values for u(δy) and this length. Thus, a danger in imple-
menting software based on the GUM uncertainty framework
for these calculations is that checks of the software for x1

or x2 sufficiently far from zero would not indicate such prob-
lems, although, when used subsequently in practice for small
values of x1 or x2, the results would be invalid, but conceiv-
ably unwittingly accepted.

9.4.3 Propagation and summarizing: non-zero
covariance

9.4.3.1 General

9.4.3.1.1 The three approaches used in the cases
where the Xi are uncorrelated (subclause 9.4.2) are now
applied for the three cases in which they are correlated,
with r(x1, x2) = 0.9. However, the GUM uncertainty
framework with first-order terms only is used. Unlike
the cases where the Xi are uncorrelated, the GUM un-
certainty framework with higher-order terms is not ap-
plied, no counterpart being provided in the GUM for the
formula containing higher-order terms when the xi have
associated non-zero covariances (subclause 5.7). Other
aspects match those in subclause 9.4.2.

9.4.3.1.2 For the GUM uncertainty framework with
first-order terms, u(δy) is evaluated from expression (50)
in annex F, which, since x2 = 0, reduces to

u2(δy) = 4x2
1u

2(x1).

Consequently, u(δy) does not depend on r(x1, x2)
and the GUM uncertainty framework with first-order
terms gives identical results to those presented in sub-
clause 9.4.2. In particular, for the case x1 = 0, u(δy) is
(incorrectly) computed as zero, as in subclause 9.4.2.2.1.

9.4.3.1.3 MCM was implemented by sampling ran-
domly from a quantity with the given expectation
and covariance matrix (expressions (29)) characterized
by a bivariate Gaussian PDF. The procedure in sub-
clause C.5 was used.

NOTE Apart from the requirement to draw from a multi-
variate distribution, the implementation of MCM for input
quantities that are correlated is no more complicated than
when the input quantities are uncorrelated.

9.4.3.2 Input estimates x1 = 0, 0.010, and 0.050

9.4.3.2.1 Table 9 contains the results obtained.
Those from MCM indicate that although δy is unaf-
fected by the correlation between the Xi, u(δy) is so
influenced, more so for small x1. The 95 % coverage
intervals are influenced accordingly.

9.4.3.2.2 Figures 15 and 16 show the PDFs provided
by the GUM uncertainty framework with first-order
terms (bell-shaped curves) and MCM (scaled frequency
distributions) in the cases x1 = 0.010 and x1 = 0.050,
respectively. The endpoints of the shortest 95 % cov-
erage interval provided by the two approaches are also
shown, as broken vertical lines for the GUM uncertainty
framework and continuous vertical lines for MCM.

NOTE Strictly, the conditions under which δY can be char-
acterized by a Gaussian PDF do not hold following an ap-
plication of the GUM uncertainty framework in this circum-
stance (subclause 5.8) [GUM 6.6]. However, this PDF and
the endpoints of the corresponding 95 % coverage interval are
shown because such a characterization is commonly used.

Figure 15 — Results for the model of comparison

loss in power meter calibration in the case x1 = 0.010,

x2 = 0, with u(x1) = u(x2) = 0.005 and r(x1, x2) = 0.9

(subclause 9.4.3.2.2).

Figure 16 — As figure 15 except that x1 = 0.050 (sub-

clause 9.4.3.2.2).
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Table 9 — Comparison loss results, for input estimates with associated non-zero covariance (r(x1, x2) = 0.9),

obtained analytically, and using the GUM uncertainty framework (GUF) and MCM (subclause 9.4.3.2.1).

Estimate Standard uncertainty Shortest 95 % coverage interval for
x1 δy /10−6 u(δy) /10−6 δY /10−6

Analytical GUF MCM Analytical GUF MCM Analytical GUF MCM
0.000 50 0 50 67 0 67 — [0, 0] [0, 185]
0.010 150 100 150 121 100 120 — [−96, 296] [13, 397]
0.050 2 550 2 500 2 550 505 500 505 — [1 520, 3 480] [1 627, 3 559]

9.4.3.3 Discussion

In the case x1 = 0.010 (figure 15), the effect of the
correlation has been to change noticeably the results re-
turned by MCM (compare with figure 13). Not only has
the shape of (the approximation to) the PDF changed,
but the corresponding coverage interval no longer has
its left-hand endpoint at zero. In the case x1 = 0.050
(figure 16), the differences between the results for the
cases where the input quantities are uncorrelated and
correlated (compare with figure 14) are less obvious.

9.5 Gauge block calibration

9.5.1 Formulation: model

9.5.1.1 The length of a nominally 50 mm gauge block
is determined by comparing it with a known reference
standard of the same nominal length. The direct out-
put of the comparison of the two gauge blocks is the
difference d in their lengths given by

d = L(1 + αθ)− Ls(1 + αsθs), (31)

where L is the length at 20 ◦C of the gauge block be-
ing calibrated, Ls is the length of the reference standard
at 20 ◦C as given in its calibration certificate, α and αs

are the coefficients of thermal expansion, respectively,
of the gauge being calibrated and the reference stan-
dard, and θ and θs are the deviations in temperature
from the 20 ◦C reference temperature, respectively, of
the gauge block being calibrated and the reference stan-
dard.

NOTE 1 The GUM refers to a gauge block as an end gauge.

NOTE 2 The symbol L for the length of a gauge block is
used in this Supplement in place of the symbol ` used in the
GUM for that quantity.

9.5.1.2 From expression (31), the output quantity L
is given by

L =
Ls(1 + αsθs) + d

1 + αθ
, (32)

from which, to an approximation adequate for most
practical purposes,

L = Ls + d + Ls(αsθs − αθ). (33)

If the difference in temperature between the gauge block
being calibrated and the reference standard is written
as δθ = θ − θs, and the difference in their thermal ex-
pansion coefficients as δα = α−αs, models (32) and (33)
become, respectively,

L =
Ls[1 + αs(θ − δθ)] + d

1 + (αs + δα)θ
(34)

and
L = Ls + d− Ls(δαθ + αsδθ). (35)

9.5.1.3 The difference d in the lengths of the gauge
block being calibrated and the reference standard is de-
termined as the average of a series of five indications,
obtained independently, of the difference using a cali-
brated comparator. d can be expressed as

d = D + d1 + d2, (36)

where D is a quantity of which the average of the five
indications is a realization, and d1 and d2 are quanti-
ties describing, respectively, the random and systematic
effects associated with using the comparator.

9.5.1.4 The quantity θ, representing deviation of the
temperature from 20 ◦C of the gauge block being cali-
brated, can be expressed as

θ = θ0 + ∆, (37)

where θ0 is a quantity representing the average temper-
ature deviation of the gauge block from 20 ◦C and ∆ a
quantity describing a cyclic variation of the temperature
deviation from θ0.

9.5.1.5 Substituting expressions (36) and (37) into
expressions (34) and (35), and working with the quan-
tity δL representing the deviation of L from the nominal
length

Lnom = 50 mm

of the gauge block, gives

δL =
Ls[1 + αs(θ0 + ∆− δθ)] + D + d1 + d2

1 + (αs + δα)(θ0 + ∆)
− Lnom

(38)
and

δL = Ls+D+d1+d2−Ls[δα(θ0+∆)+αsδθ]−Lnom (39)

as models for the measurement problem.
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9.5.1.6 The treatment here of the measurement
problem is in terms of the models (38) and (39) with
output quantity δL and input quantities Ls, D, d1,
d2, αs, θ0, ∆, δα and δθ. It differs from that given
in GUM example H.1 in that in the GUM the mod-
els (36) and (37) are treated as sub-models to mod-
els (34) and (35), i.e. the GUM uncertainty framework
is applied to each model (36) and (37), with the re-
sults obtained used to provide information about the
input quantities d and θ in models (34) and (35). The
treatment here avoids having to use the results obtained
from MCM applied to the sub-models (36) and (37) to
provide information about the distributions for the in-
put quantities d and θ in expressions (34) and (35).

9.5.2 Formulation: assignment of PDFs

9.5.2.1 General

In the following subclauses the available information
about each input quantity in the models (38) and (39)
is provided. This information is extracted from the de-
scription given in the GUM, and for each item of in-
formation the GUM subclause from which the item is
extracted is identified. Also provided is an interpreta-
tion of the information in terms of an assignment of a
distribution to the quantity. Table 10 summarizes the
assignments made.

9.5.2.2 Length Ls of the reference standard

9.5.2.2.1 Information

The calibration certificate for the reference standard
gives L̂s = 50.000 623 mm as its length at 20 ◦C [GUM
H.1.5]. It gives Up = 0.075 µm as the expanded un-
certainty of the reference standard and states that it
was obtained using a coverage factor of kp = 3 [GUM
H.1.3.1]. The certificate states that the effective degrees
of freedom associated with the combined standard un-
certainty, from which the quoted expanded uncertainty
was obtained, is νeff(u(L̂s)) = 18 [GUM H.1.6].

9.5.2.2.2 Interpretation

Assign a scaled and shifted t-distribution tν(µ, σ2) (sub-
clause 6.4.9.7) to Ls, with

µ = 50 000 623 nm,

σ =
Up

kp
=

75
3

nm = 25 nm, ν = 18.

9.5.2.3 Average length difference D

9.5.2.3.1 Information

The average D̂ of the five indications of the difference
in lengths between the gauge block being calibrated
and the reference standard is 215 nm [GUM H.1.5].
The pooled experimental standard deviation charac-
terizing the comparison of L and Ls was determined
from 25 indications, obtained independently, of the dif-
ference in lengths of two standard gauge blocks, and
equalled 13 nm [GUM H.1.3.2].

9.5.2.3.2 Interpretation

Assign a scaled and shifted t-distribution tν(µ, σ2) (sub-
clause 6.4.9) to D, with

µ = 215 nm, σ =
13√

5
nm = 6 nm, ν = 24.

9.5.2.4 Random effect d1 of comparator

9.5.2.4.1 Information

According to the calibration certificate of the compara-
tor used to compare L with Ls, the associated uncer-
tainty due to random effects is 0.01 µm for a coverage
probability of 95 % and is obtained from six indications,
obtained independently [GUM H.1.3.2].

9.5.2.4.2 Interpretation

Assign a scaled and shifted t-distribution tν(µ, σ2) (sub-
clause 6.4.9.7) to d1, with

µ = 0 nm,

σ =
U0.95

k0.95
=

10
2.57

nm = 4 nm, ν = 5.

Here, k0.95 is obtained from table G.2 of the GUM
with ν = 5 degrees of freedom and p = 0.95.

9.5.2.5 Systematic effect d2 of comparator

9.5.2.5.1 Information

The uncertainty of the comparator due to systematic
effects is given in the certificate as 0.02 µm at the “three
sigma level” [GUM H.1.3.2]. This uncertainty may be
assumed to be reliable to 25 %, and thus the degrees of
freedom is νeff(u(d̂2)) = 8 [GUM H.1.6].
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Table 10 — PDFs assigned to input quantities for the gauge block models (38) and (39) on the basis of available

information (subclause 9.5.2.1). Table 1 provides general information concerning these PDFs.

Parameters
Quan- PDF ——————————————————————————————————–
tity µ σ ν a b d

Ls tν(µ, σ2) 50 000 623 nm 25 nm 18

D tν(µ, σ2) 215 nm 6 nm 24

d1 tν(µ, σ2) 0 nm 4 nm 5

d2 tν(µ, σ2) 0 nm 7 nm 8

αs R(a, b) 9.5× 10−6 ◦C−1 13.5× 10−6 ◦C−1

θ0 N(µ, σ2) −0.1 ◦C 0.2 ◦C

∆ U(a, b) −0.5 ◦C 0.5 ◦C

δα CTrap(a, b, d) −1.0× 10−6 ◦C−1 1.0× 10−6 ◦C−1 0.1× 10−6 ◦C−1

δθ CTrap(a, b, d) −0.050 ◦C 0.050 ◦C 0.025 ◦C

9.5.2.5.2 Interpretation

Assign a scaled and shifted t-distribution tν(µ, σ2) (sub-
clause 6.4.9) to d2, with

µ = 0 nm, σ =
Up

kp
=

20
3

nm = 7 nm, ν = 8.

9.5.2.6 Thermal expansion coefficient αs

9.5.2.6.1 Information

The coefficient of thermal expansion of the reference
standard is given as α̂s = 11.5× 10−6 ◦C−1 with possi-
ble values of this quantity represented by a rectangular
distribution with limits ±2×10−6 ◦C−1 [GUM H.1.3.3].

9.5.2.6.2 Interpretation

Assign a rectangular distribution R(a, b) (sub-
clause 6.4.2) to αs, with limits

a = 9.5× 10−6 ◦C−1, b = 13.5× 10−6 ◦C−1.

NOTE There is no information about the reliability of the
limits and so a rectangular distribution with exactly known
limits is assigned. Such information may have been omitted
from the description in the GUM because the correspond-
ing sensitivity coefficient is zero, and so the quantity makes

no contribution in an application of the GUM uncertainty
framework based on first order terms only.

9.5.2.7 Average temperature deviation θ0

9.5.2.7.1 Information

The temperature of the test bed is reported as (19.9 ±
0.5) ◦C. The average temperature deviation θ̂0 =
−0.1 ◦C is reported as having an associated stan-
dard uncertainty due to the uncertainty associated with
the average temperature of the test bed of u(θ̂0) =
0.2 ◦C [GUM H.1.3.4].

9.5.2.7.2 Interpretation

Assign a Gaussian distribution N(µ, σ2) (sub-
clause 6.4.7) to θ0, with

µ = −0.1 ◦C, σ = 0.2 ◦C.

NOTE There is no information about the source of the
evaluation of the uncertainty and so a Gaussian distribution
is assigned. Also see subclause 9.5.2.6.2 note, regarding such
information.
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9.5.2.8 Effect ∆ of cyclic temperature variation

9.5.2.8.1 Information

The temperature of the test bed is reported as (19.9 ±
0.5) ◦C. The stated maximum offset of 0.5 ◦C for ∆,
is said to represent the amplitude of an approximately
cyclical variation of temperature under a thermostatic
system. The cyclic variation of temperature results in
a U-shaped (arc sine) distribution [GUM H.1.3.4].

9.5.2.8.2 Interpretation

Assign an arc sine distribution U(a, b) (subclause 6.4.6)
to ∆, with limits

a = −0.5 ◦C, b = 0.5 ◦C.

NOTE There is no information about the reliability of the
limits and so a U-shaped distribution with exactly known
limits is assigned. As in subclause 9.5.2.6.2 note, such in-
formation may have been omitted from the description in
the GUM.

9.5.2.9 Difference δα in expansion coefficients

9.5.2.9.1 Information

The estimated bounds on the variability of δα are ±1×
10−6 ◦C−1, with an equal probability of δα hav-
ing any value within those bounds [GUM H.1.3.5].
These bounds are deemed to be reliable to 10 %, giv-
ing ν(u(δα̂)) = 50 [GUM H.1.6].

9.5.2.9.2 Interpretation

Assign a rectangular distribution with inexactly pre-
scribed limits (subclause 6.4.3) to δα, with

a = −1.0× 10−6 ◦C−1, b = 1.0× 10−6 ◦C−1,

d = 0.1× 10−6 ◦C−1.

The stated reliability of 10 % on the estimated bounds
provides the basis for this value of d.

9.5.2.10 Difference δθ in temperatures

9.5.2.10.1 Information

The reference standard and the gauge block being cal-
ibrated are expected to be at the same temperature,
but the temperature difference δθ could lie with equal
probability anywhere in the estimated interval −0.05 ◦C
to 0.05 ◦C [GUM H.1.3.6]. This difference is be-
lieved to be reliable only to 50 %, giving ν(u(δθ̂)) =
2 [GUM H.1.6].

9.5.2.10.2 Interpretation

Assign a rectangular distribution with inexactly pre-
scribed limits (subclause 6.4.3) to δθ, with

a = −0.050 ◦C, b = 0.050 ◦C, d = 0.025 ◦C.

The stated reliability of 50 % provides the basis for this
value of d.

9.5.3 Propagation and summarizing

9.5.3.1 The GUM uncertainty framework

The application of the GUM uncertainty framework is
based on

— a first-order Taylor series approximation to the
model (38) or (39),

— use of the Welch-Satterthwaite formula to evaluate
an effective degrees of freedom (rounded towards
zero) associated with the uncertainty obtained from
the law of propagation of uncertainty, and

— assigning a scaled and shifted t-distribution with
the above degrees of freedom to the output quan-
tity.

9.5.3.2 Monte Carlo method

The application of MCM

— requires sampling from a rectangular distribu-
tion (subclauses 6.4.2.4, C.3.3), Gaussian distrib-
ution (subclauses 6.4.7.4, C.4), t-distribution (sub-
clauses 6.4.9.5, C.6), U-shaped distribution (sub-
clause 6.4.6.4), and rectangular distribution with
inexactly prescribed limits (subclause 6.4.3.4), and

— implements adaptive MCM (subclause 7.9) with
a numerical tolerance (δ = 0.005) set to de-
liver ndig = 2 significant decimal digits in the stan-
dard uncertainty.

9.5.4 Results

9.5.4.1 Table 11 gives the results obtained for the ap-
proximate model (39) using the information summarized
in table 10. Figure 17 shows the PDFs for δL obtained
from the application of the GUM uncertainty framework
(solid curve) and MCM (scaled frequency distribution).
The distribution obtained from the GUM uncertainty
framework is a t-distribution with ν = 16 degrees of
freedom. The endpoints of the shortest 99 % coverage
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intervals for δL obtained from the PDFs are indicated
as (continuous) vertical lines (obtained from the GUM
uncertainty framework) and (broken) vertical lines (ob-
tained from MCM).

9.5.4.2 1.36 × 106 trials were taken by the adap-
tive Monte Carlo procedure. The calculations were
also carried out for a coverage probability of 95 %, for
which 0.52× 106 trials were taken.

Table 11 — Results obtained for the approximate

model (39) using the information summarized in ta-

ble 10 (subclause 9.5.4.1). GUF denotes the GUM

uncertainty framework.

Method δL̂ u(δL̂) Shortest 99 % coverage
/nm /nm interval for δL /nm

GUF 838 32 [746, 930]
MCM 838 36 [745, 931]

Figure 17 — PDFs for δL obtained using

the GUM uncertainty framework (continuous bell-

shaped curve) and MCM (scaled histogram) for the

approximate model (39) using the information sum-

marized in table 10 (subclause 9.5.4.1).

9.5.4.3 Results obtained for the non-linear
model (38) are identical to the results in table 11
to the number of decimal digits given there.

9.5.4.4 There are some modest differences in the re-
sults obtained. u(δL̂) was 4 nm greater for the appli-
cation of MCM than for the GUM uncertainty frame-
work. The length of the 99 % coverage interval for δL
was 2 nm greater. These results apply equally to the
non-linear and the approximate models. Whether such
differences are important has to be judged in terms of
the manner in which the results are to be used.
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Annex A
Historical perspective

A.1 The GUM is a rich document, covering many
aspects of uncertainty evaluation. Although it does
not refer explicitly to the use of a Monte Carlo
method, such use was recognized during the drafting
of the GUM. The ISO/IEC/OIML/BIPM draft (First
Edition) of June 1992, produced by ISO/TAG 4/WG 3,
states [G.1.5]:

If the relationship between Y [the output mea-
surand] and its input quantities is nonlinear, or
if the values available for the parameters char-
acterizing the probabilities of the Xi [the input
quantities] (expectation, variance, higher mo-
ments) are only estimates and are themselves
characterized by probability distributions, and
a first-order Taylor expansion of the relation-
ship is not an acceptable approximation, the
distribution of Y cannot be expressed as a con-
volution. In this case, a numerical approach
(such as Monte Carlo calculations) will gener-
ally be required and the evaluation is compu-
tationally more difficult.

A.2 In the published version of the GUM, this sub-
clause had been modified to read:

If the functional relationship between Y and its
input quantities is nonlinear and a first-order
Taylor expansion of the relationship is not an
acceptable approximation (see 5.1.2 and 5.1.5),
then the probability distribution of Y cannot
be obtained by convolving the distributions of
the input quantities. In such cases, other ana-
lytical or numerical methods are required.

A.3 The interpretation made here of this re-wording
is that “other analytical or numerical methods” cover
any other appropriate approach. This interpretation is
consistent with that of the National Institute of Stan-
dards and Technology of the United States [48]:

[6.6] The NIST policy provides for exceptions
as follows (see Annex C):

It is understood that any valid statistical
method that is technically justified under the
existing circumstances may be used to deter-
mine the equivalent of ui [the standard devia-
tion of the ith input quantity], uc [the standard
deviation of the output quantity], or Up [the
half-width of an uncertainty interval for the
output measurand value, under a Gaussian as-
sumption]. Further, it is recognized that inter-

national, national, or contractual agreements
to which NIST is a party may occasionally
require deviation from NIST policy. In both
cases, the report of uncertainty should docu-
ment what was done and why.
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Annex B
Sensitivity coefficients and uncertainty

budgets

B.1 Neither the propagation of distributions nor its
implementation using MCM provides sensitivity coef-
ficients [GUM 5.1.3]. However, by holding all input
quantities but one fixed at their best estimates, MCM
can be used to provide the PDF for the output quan-
tity for the model having just that input quantity as a
variable [8]. The ratio of the standard deviation of the
resulting model values (cf. subclause 7.6) and the stan-
dard uncertainty associated with the best estimate of
the relevant input quantity can be taken as a sensitivity
coefficient. This ratio corresponds to that which would
be obtained by taking all higher-order terms in the Tay-
lor series expansion of the model into account. This ap-
proach may be viewed as a generalization of the approxi-
mate partial-derivative formula in the GUM [GUM 5.1.3
note 1]. Both the sensitivity coefficients and the contri-
butions for each input quantity to the uncertainty asso-
ciated with the estimate of the output quantity will in
general differ from those obtained with the GUM.

B.2 In many measurement contexts it is common
practice to list the uncertainty components ui(y) =
|ci|u(xi), i = 1, . . . , N , where ci is the ith sensitivity
coefficient and u(xi) the standard uncertainty associ-
ated with the ith input estimate xi, contributing to the
standard uncertainty u(y). Usually these are presented
in a table, the “uncertainty budget”. This practice may
be useful to identify the dominant terms contributing
to u(y) associated with the estimate of the output quan-
tity. However, in cases for which (a valid implementa-
tion of) the propagation of distributions is more appro-
priate, an uncertainty budget should be regarded as a
qualitative tool.
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Annex C
Sampling from probability distributions

C.1 General

C.1.1 This annex provides technical information
concerning sampling from probability distributions.
Such sampling forms a central part of the use of MCM
as an implementation of the propagation of distribu-
tions. A digital library of mathematical functions [36]
and a repository of relevant software [35] may also be
consulted.

C.1.2 A generator for any distribution, such as the
distributions considered in subclause 6.4 (also see ta-
ble 1), can in principle be obtained from its distribution
function, together with the use of a generator for the
rectangular distribution, as indicated in subclause C.2).
A generator for a rectangular distribution is provided
in subclause C.3.3. For some distributions, such as the
Gaussian distribution and the t-distribution, it is more
efficient to use specifically developed generators, such as
those provided in this annex. Subclause 6.4 also gives
advice on sampling from probability distributions.

NOTE Generators other than those given in this annex can
be used. Their statistical quality should be tested before use.
A testing facility is available for pseudo-random number gen-
erators for the rectangular distribution. See subclause C.3.2.

C.2 General distributions

A draw from any strictly increasing, univariate continu-
ous distribution function GX(ξ) can be made by trans-
forming a draw from a rectangular distribution:

a) draw a random number ρ from the rectangular dis-
tribution R(0, 1);

b) determine ξ satisfying GX(ξ) = ρ.

NOTE 1 The inversion required in step b), i.e. forming ξ =
G−1

X (ρ), may be possible analytically. Otherwise it can be
carried out numerically.

EXAMPLE As an instance of analytical inversion, con-
sider the exponential PDF for X, with X having expec-
tation x (> 0), viz. gX(ξ) = exp(−ξ/x)/x, for ξ ≥ 0,
and zero otherwise (subclause 6.4.10). Then, by integra-
tion, GX(ξ) = 1− exp(−ξ/x), for ξ ≥ 0, and zero otherwise.
Hence ξ = −x ln(1−ρ). This result can be simplified slightly
by using the fact that if a variable Q has the rectangular dis-
tribution R(0, 1), then so has 1−Q. Hence, ξ = −x ln ρ.

NOTE 2 Numerically, ξ can generally be determined by
solving the “zero-of-a-function” problem GX(ξ) − ρ = 0.
Upper and lower bounds for ξ are typically easily found,

in which case a recognized “bracketing” algorithm such as
bisection or, more efficiently, a combination of linear inter-
polation and bisection [11], for example, can be used to de-
termine ξ.

NOTE 3 If the pseudo-random number generator for the
rectangular distribution is to be used as a basis for generat-
ing numbers from another distribution, a draw of ξ equal to
zero or one can cause failure of that generator. An example
is the arc sine distribution (subclause 6.4.6). Its PDF (ex-
pression (10)) is not defined for ξ equal to zero or one. The
use of the generator given in subclause C.3.3 would not give
rise to a failure of that type.

C.3 Rectangular distribution

C.3.1 General

C.3.1.1 The ability to generate pseudo-random num-
bers from a rectangular distribution is fundamental
in its own right, and also as the basis for generat-
ing pseudo-random numbers from any distribution (sub-
clauses C.2, C.4, C.6) using an appropriate algorithm or
formula. In the latter regard, the quality of the numbers
generated from a non-rectangular distribution depends
on that of the generator of numbers from a rectangular
distribution and on the properties of the algorithm em-
ployed. The quality of the numbers generated from a
non-rectangular distribution can therefore be expected
to be related to those generated from the rectangular
distribution. Only a generator that can faithfully pro-
vide rectangularly distributed numbers used in conjunc-
tion with a good algorithm can be expected to constitute
a generator that can faithfully provide non-rectangularly
distributed numbers.

C.3.1.2 It is thus important that the underlying fa-
cility for generating rectangularly distributed numbers
is sound [29]. Unless the user is sure of its pedigree,
a generator should not be used until adequate testing
has been carried out. Misleading results can otherwise
be obtained. The use of a testing facility [28] is rec-
ommended. A procedure for generating rectangularly
distributed numbers, which has been shown to perform
well in these tests and is straightforward to implement,
is given in subclause C.3.3.

C.3.1.3 Table C.1 defines relevant aspects of the
functioning of a procedure for generating pseudo-
random numbers from the rectangular distribu-
tion R(0, 1), specifying the input, input-output and
output parameters associated with their determination.

NOTE 1 By setting the seeds in table C.1 to seeds previ-
ously used, the same sequence of random numbers can be
produced. Doing so is important as part of software regres-
sion testing, used to verify the consistency of results pro-
duced using the software with those from previous versions.
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NOTE 2 Some pseudo-random number generators provide
a single draw at each call and others several draws.

Table C.1 — Generation of pseudo-random numbers

from a rectangular distribution (subclause C.3.1.3).

Input parameter

q Number of pseudo-random numbers to be generated

Input-output parameter

t Column vector of parameters, some of which may be
required as input quantities, that may be changed as
part of the computation. Subsequent values of these
parameters are not usually of immediate concern to
the user. The parameters are needed to help control
the process by which the pseudo-random numbers are
generated. The parameters may be realized as global
variables and thus not explicitly appear as parameters
of the procedure. One or more of these parameters
may be a seed, used to initiate the sequence of random
numbers produced by successive calls of the procedure

Output parameter

z Column vector of q draws from the rectangular dis-
tribution R(0, 1)

C.3.1.4 A pseudo-random number x drawn from
R(a, b) is given by a + (b − a)z, where z is a pseudo-
random number drawn from R(0, 1).

C.3.2 Randomness tests

C.3.2.1 Any pseudo-random number generator used
should (a) have good statistical properties, (b) read-
ily be implemented in any programming language, and
(c) give the same results for the same seed on any com-
puter. It is also desirable that it is compact, thus ren-
dering its implementation straightforward. One such
generator that comes close to satisfying these require-
ments is that due to Wichmann and Hill [50, 51]. It has
been used in many areas including uncertainty compu-
tations. However, its cycle length (the number of ran-
dom numbers generated before the sequence is repeated)
is 231, today considered inadequate for some problems.
Moreover, not all tests of its statistical properties were
passed [33]. Further, the generator was designed for 16-
bit computers, whereas today 32-bit and 64-bit comput-
ers are almost universally used.

NOTE The period of the sequence of numbers produced by
a pseudo-random number generator is the number of consec-
utive numbers in the sequence before they are repeated.

C.3.2.2 An extensive test of the statistical properties
of any generator submitted to it is carried out by the
test suite TestU01 [28]. This suite is very detailed, with
many individual tests, including the so-called Big Crush.
Several generators passing the Big Crush test are listed
by Wichmann and Hill [52]. An enhanced Wichmann-
Hill generator (subclause C.3.3) also passes the test, and
has the properties [52] that

a) it is straightforward to code in any programming
language. It does not depend upon bit manipula-
tion used by some generators,

b) the state (the amount of information preserved by
the generator between calls to it) is small and easy
to handle (cf. the parameter t in table C.1),

c) it can readily be used to provide multiple sequences
needed for highly parallel applications, likely to be
a feature of future uncertainty calculations, and

d) there are variants of the generator for 32- and 64-bit
computers.

C.3.3 Procedure for generating pseudo-random
numbers from a rectangular distribution

C.3.3.1 Like the previous generator, the enhanced
Wichmann-Hill generator is a combination of congru-
ential generators. The new generator combines four
such generators, whereas the previous version combined
three. The new generator has a period of 2121, accept-
able for any conceivable application.

C.3.3.2 Table C.2 defines the enhanced Wichmann-
Hill generator for producing pseudo-random numbers
from R(0, 1) for a 32-bit computer.

C.3.3.3 For 64-bit computers, step a) in the genera-
tor of table C.2 is to be replaced by the simpler step:

a) For j = 1, . . . , 4, form ij = (aj × ij) mod dj

C.4 Gaussian distribution

The procedure in table C.3 provides draws from the
standard Gaussian distribution N(0, 1) using the Box-
Muller transform [3]. A draw from the Gaussian distri-
bution N(µ, σ2) is given by µ + σz, where z is a draw
from N(0, 1).

C.5 Multivariate Gaussian distribution

C.5.1 The most important multivariate distribu-
tion is the multivariate (or joint) Gaussian distribu-
tion N(µ, V ), where µ is an n×1 vector of expectations
and V a covariance matrix of order n.

C.5.2 Draws from N(µ, V ) [43, 47] can be obtained
using the procedure in table C.4.

NOTE 1 If V is positive definite (i.e. all its eigenvalues
are strictly positive), the Cholesky factor R is unique [21,
page 204].
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Table C.2 — The enhanced Wichmann-Hill genera-

tor for pseudo-random numbers (subclause C.3.3.2)

from a rectangular distribution on the interval (0, 1)

for 32-bit computers. bwc denotes the largest integer

no greater than w.

Input parameter

None

Input-output parameter

i1,
i2,
i3,
i4

Integer parameters required as input quantities and
that are changed by the procedure. Set to integers
between 1 and 2 147 483 647 before the first call.
Do not disturb between calls. Subsequent values of
these parameters are not usually of concern to the
user. The parameters provide the basis by which the
pseudo-random numbers are generated. They may
be realized as global variables and thus not appear
explicitly as parameters of the procedure

Constant

a,
b,

Vectors of integer constants of dimension 4,
where a = (a1, . . . , a4)

T, etc., given by:
c, aT = (11 600, 47 003, 23 000, 33 000),
d bT = (185 127, 45 688, 93 368, 65 075),

cT = (10 379, 10 479 , 19 423, 8 123),
dT = 2 147 483 123 × (1, 1, 1, 1) + (456, 420, 300, 0).
Do not disturb between calls

Output parameter

r Pseudo-random number drawn from R(0, 1)

Computation

a) For j = 1, . . . , 4:
i) Form ij = aj × (ij mod bj)− cj × bij/bjc

ii) If ij < 0, replace ij by ij + dj

b) Form w =
∑4

j=1
ij/dj

c) Form r = w − bwc

Table C.3 — The Box-Muller Gaussian pseudo-

random number generator (subclause C.4).

Input parameter

None

Output parameter

z1,
z2

Two draws, obtained independently, from a standard
Gaussian distribution

Computation

a) Generate random draws r1 and r2 independently
from the rectangular distribution R(0, 1)
b) Form z1 =

√
−2 ln r1 cos 2πr2 and z2 =√

−2 ln r1 sin 2πr2

NOTE 2 If V is not positive definite, perhaps because of
numerical rounding errors or other sources, R may not exist.
Moreover, in cases where one or more of the eigenvalues of V
is very small (but positive), the software implementation of
the Cholesky factorization algorithm used may be unable to
form R because of the effects of floating-point errors. In
either of these situations it is recommended that V is “re-
paired”, i.e. as small a change as possible is made to V such
that the Cholesky factor R for the modified matrix is well
defined. The resulting factor is exact for a covariance matrix
that numerically is close to the original V . A simple repair
procedure is available [47, page 322] for this purpose, and is
embodied in the MULTNORM generator [43].

NOTE 3 If V is semi-positive definite, the eigendecompo-
sition V = QΛQT, where Q is an orthogonal matrix and Λ
a diagonal matrix, can be formed. Then Λ1/2QT can be used
to obtain draws from N(0, V ), even if V is rank deficient.

Table C.4 — A multivariate Gaussian random num-

ber generator (subclause C.5.2).

Input parameter

n Dimension of the multivariate Gaussian distribution
µ n× 1 vector of expectations
V Covariance matrix of order n
q Number of multivariate Gaussian pseudo-random

numbers to be generated

Output parameter

X n×q matrix, the jth column of which is a draw from
the multivariate Gaussian distribution

Computation

a) Form the Cholesky factor R of V , i.e. the upper
triangular matrix satisfying V = RTR. (To gen-
erate q pseudo-random numbers, it is necessary to
perform this matrix factorization only once.)
b) Generate an n× q array Z of standard Gaussian
variates
c) Form

X = µ1T + RTZ,

where 1 denotes a column vector of q ones

C.5.3 Figure C.1 shows 200 points generated using
the MULTNORM generator [43] from N(µ, V ), where

µ =
[

2.0
3.0

]
, V =

[
2.0 1.9
1.9 2.0

]
,

i.e. in which the two quantities concerned are posi-
tively correlated. Similar generators are available else-
where [12].

C.5.4 In figure C.1, the points span an elongated
angled ellipse. Were the off-diagonal elements of V
to be replaced by zero, the points would span a circle.
Were the diagonal elements made unequal, and the off-
diagonal elements kept at zero, the points would span
an ellipse whose axes were parallel to the axes of the
graph. If the diagonal elements were negative, and hence
the quantities concerned negatively correlated, the ma-
jor axis of the ellipse would have a negative rather than
a positive gradient.
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Figure C.1 — Points sampled from a bivariate

Gaussian distribution with positive correlation (sub-

clause C.5.3).

C.6 t-distribution

The procedure in table C.5 provides an approach [27],
[42, page 63] to obtain draws from the t-distribution
with ν degrees of freedom.

Table C.5 — A t-distribution pseudo-random num-

ber generator (subclause C.6).

Input parameter

ν Degrees of freedom

Output parameter

t Draw from a t-distribution with ν degrees of freedom

Computation

a) Generate two draws r1 and r2 independently from
the rectangular distribution R(0, 1)
b) If r1 < 1/2, form t = 1/(4r1 − 1) and v = r2/t2;
otherwise form t = 4r1 − 3 and v = r2

c) If v < 1− |t|/2 or v < (1+ t2/ν)−(ν+1)/2, accept t
as a draw from the t-distribution; otherwise repeat
from step a)

NOTE ν must be greater than two for the standard devi-
ation of the t-distribution with ν degrees of freedom to be
finite.
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Annex D
Continuous approximation to the

distribution for the output quantity

D.1 It is sometimes useful to work with a continuous
approximation G̃Y (η), say, to the distribution for the
output quantity Y , rather than the discrete representa-
tion G of subclause 7.5.

NOTE Working with a continuous approximation means,
for instance, that (a) sampling from the distribution can be
carried out without the need for rounding, as in the discrete
case, and (b) numerical methods that require continuity for
their operation can be used to determine the shortest cover-
age interval.

D.2 In order to form G̃Y (η), consider the discrete
representation G = {y(r), r = 1, . . . ,M} of GY (η) in
subclause 7.5.1, after replacing replicate model values
of y(r) as necessary (step b) in that subclause). Then,
carry out the following steps:

a) assign uniformly spaced cumulative probabili-
ties pr = (r−1/2)/M , r = 1, . . . ,M , to the y(r) [8].
The numerical values pr, r = 1, . . . ,M , are the
midpoints of M contiguous probability intervals of
width 1/M between zero and one;

b) form G̃Y (η) as the (continuous) strictly increas-
ing piecewise-linear function joining the M points
(y(r), pr), r = 1, . . . ,M :

G̃Y (η) =
r − 1/2

M
+

η − y(r)

M(y(r+1) − y(r))
,

y(r) ≤ η ≤ y(r+1), r = 1, . . . ,M − 1. (40)

NOTE The form (40) provides a convenient basis for sam-

pling from G̃Y (η) for purposes of a further stage of uncer-
tainty evaluation. See subclause C.2 for sampling inversely
from a distribution function. Some software libraries and
packages provide facilities for piecewise-linear interpolation.

Since G̃Y (η) is piecewise linear, so is its inverse, and such
facilities can readily be applied.

D.3 Figure D.1 illustrates G̃Y (η) obtained us-
ing MCM based on M = 50 sampled values from a
Gaussian PDF gY (η) with Y having expectation 3 and
standard deviation 1.

D.4 Consider g̃Y (η) = G̃′
Y (η), with G̃Y (η) given in

expression (40). The function g̃Y (η) is piecewise con-
stant with breakpoints at η = y(1), . . . , y(M). The ex-
pectation ỹ and standard deviation u(ỹ) of Y , described
by g̃Y (η), are taken, respectively, as an estimate of Y
and the standard uncertainty associated with that esti-

Figure D.1 — An approximation G̃Y (η) to the distri-

bution function GY (η) (subclause D.3). “Unit” de-

notes any unit.

mate. ỹ and u(ỹ) are given by

ỹ =
1
M

M∑
r=1

′′y(r) (41)

and

u2(ỹ) =
1
M

(
M∑

r=1

′′(y(r) − ỹ)2 − 1
6

M−1∑
r=1

(y(r+1) − y(r))2
)

,

(42)
where the double prime on a summation symbol indi-
cates that the first and the last terms in the sum are to
be taken with weight one half.

NOTE For a sufficiently large numerical value of M (105,
say, or greater), ỹ and u(ỹ) obtained using formulae (41)
and (42) would generally be indistinguishable for practical
purposes from those given by formulae (17) and (18), respec-
tively.

D.5 Let α denote any value between zero and 1− p,
where p is the required coverage probability (e.g. 0.95).
The endpoints of a 100p % coverage interval can be ob-
tained from G̃(η) by inverse linear interpolation. To de-
termine the lower endpoint ylow such that α = G̃(ylow),
identify the index r for which the points (y(r), pr) and
(y(r+1), pr+1) satisfy

pr ≤ α < pr+1.

Then, by inverse linear interpolation,

ylow = y(r) +
(
y(r+1) − y(r)

) α− pr

pr+1 − pr
.

Similarly, the upper endpoint yhigh, determined such
that p + α = G̃(yhigh), is calculated from

yhigh = y(s) +
(
y(s+1) − y(s)

) p + α− ps

ps+1 − ps
,
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where the index s is such that the points (y(s), ps) and
(y(s+1), ps+1) satisfy

ps ≤ p + α < ps+1.

D.6 The choice α = 0.025 gives the coverage interval
defined by the 0.025- and 0.975-quantiles. This choice
provides the probabilistically symmetric 95 % coverage
interval for Y .

D.7 The shortest coverage interval can generally be
obtained from G̃(η) by determining α such that G̃−1(p+
α) − G̃−1(α), = H(α), say, is a minimum. A straight-
forward numerical approach to determining the mini-
mum is to evaluate H(α) for a large number of uniformly
spaced choices {αk} of α between zero and 1 − p, and
choose α` from the set {αk} that yields the minimum
from the set {H(αk)}.

D.8 The computation of a coverage interval is fa-
cilitated if pM is an integer. Then, the numerical
value of α, such that H(α) is a minimum, is equal
to r∗/M , where r∗ is the index r such that the inter-
val length y(r+pM) − y(r), over r = 1, . . . , (1 − p)M , is
least.
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Annex E
Coverage interval for the four-fold

convolution of a rectangular distribution

E.1 In subclause 9.2.3.2, the analytic solution

± 2
√

3(2− (3/5)1/4) ≈ ±3.88 (43)

is stated. It constitutes the endpoints of the probabilis-
tically symmetric 95 % coverage interval for the out-
put quantity Y in an additive model having four input
quantities, the PDFs for which are identical rectangular
distributions. This result is established in this annex.

E.2 The rectangular distribution R(a, b) (sub-
clause 6.4.2) takes the constant value (b− a)−1 for a ≤
ξ ≤ b and is zero otherwise. The n-fold convolution
of R(0, 1) is the B-spline Bn(ξ) of order n (degree n−1)
with knots 0, . . . , n [44]. An explicit expression is [6]

Bn(ξ) =
1

(n− 1)!

n∑
r=0

nCr(−1)r(ξ − r)n−1
+ ,

where

nCr =
n!

r!(n− r)!
, z+ = max(z, 0).

In particular,

B4(ξ) =
1
6
ξ3, 0 ≤ ξ ≤ 1

(with different cubic polynomial expressions for B4(ξ)
in other intervals between adjacent knots), and hence∫ 1

0

B4(ξ) dξ =
[

1
24

ξ4

]1
0

=
1
24

≈ 0.0417.

E.3 The left-hand endpoint dlow of the probabilisti-
cally symmetric 95 % coverage interval lies between zero
and one, since

0.025 =
1
40

<
1
24

of the area under the PDF lies to the left of dlow, which
is therefore given by∫ dlow

0

B4(ξ) dξ =
1
24

d4
low =

1
40

,

i.e.
dlow = (3/5)1/4.

By symmetry, the right-hand endpoint is

dhigh = 4− (3/5)1/4.

Thus, the probabilistically symmetric 95 % coverage in-
terval is[

(3/5)1/4, 4− (3/5)1/4
]
≡ 2±

(
2− (3/5)1/4

)
.

The corresponding coverage interval for the four-fold
convolution of the rectangular PDF R(−

√
3,
√

3) (which
has zero expectation and unit standard deviation) is
given by shifting this result by two units and scaling
it by 2

√
3 units, yielding expression (43).
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Annex F
Comparison loss problem

This annex is concerned with some details of the com-
parison loss problem (subclause 9.4). Subclause F.1
provides the expectation and standard deviation of δY
(subclause 9.4.2.1.2). Subclause F.2 provides the PDF
for δY analytically when x1 = x2 = r(x1, x2) = 0
(subclause 9.4.2.1.2). Subclause F.3 applies the GUM
uncertainty framework for uncorrelated and correlated
input quantities (subclauses 9.4.2.1.3, 9.4.3.1.1).

F.1 Expectation and standard deviation
obtained analytically

F.1.1 The variance of a quantity X can be expressed
in terms of expectations as [40, page 124]

V(X) = E(X2)− [E(X)]2.

Thus,

E(X2) = [E(X)]2 + V(X) = x2 + u2(x),

where x is the best estimate of X and u(x) the standard
uncertainty associated with x. Thus, for the model (30),
viz. δY = 1− Y = X2

1 + X2
2 ,

δy = E(δY ) = x2
1 + x2

2 + u2(x1) + u2(x2).

This result applies (a) regardless of which PDFs are as-
signed to X1 and X2 and (b) whether X1 and X2 are
independent or not.

F.1.2 The standard uncertainty associated with δy
can be obtained from

u2(δy) = u2(x2
1) + u2(x2

2) + 2u(x2
1, x

2
2),

where u2(x2
i ) = V(X2

i ), i = 1, 2, and u(x2
1, x

2
2) =

Cov(X2
1 , X2

2 ). Then, applying Price’s Theorem for
Gaussian distributions [38, 39],

u2(δy) = 4u2(x1)x2
1 + 4u2(x2)x2

2 + 2u4(x1) (44)
+ 2u4(x2) + 4u2(x1, x2) + 8u(x1, x2)x1x2.

When x2 = 0 and u(x2) = u(x1), and replacing u(x1, x2)
by r(x1, x2)u2(x1),

u(δy) = 2
{
x2

1 + [1 + r2(x1, x2)]u2(x1)
}1/2

u(x1).

F.1.3 When X1 and X2 are uncorrelated,
i.e. u(x1, x2) = 0, expression (44) becomes

u2(δy) = 4u2(x1)x2
1 + 4u2(x2)x2

2 + 2u4(x1) + 2u4(x2).
(45)

Expression (45) can be verified by applying formula (10)
of the GUM [GUM 5.1.2] and the immediately follow-
ing GUM formula [GUM 5.1.2 note].

F.2 Analytic solution for zero estimate of
the voltage reflection coefficient having
associated zero covariance

F.2.1 For the case x1 = x2 = r(x1, x2) = 0, based on
a first-order Taylor series approximation of f(X), where
all derivatives are evaluated at X = x and u(x1) =
u(x2), the PDF gY (η) for Y can be obtained analyti-
cally. It is valuable to have such a solution for further
validation purposes. In the above circumstances,

δY = u2(x1)
[

X2
1

u2(x1)
+

X2
2

u2(x2)

]
.

F.2.2 The term in square brackets is the sum, Z, say,
of the squares of two independent quantities, each of
which is distributed as a standard Gaussian PDF. Thus
the sum is distributed as chi-squared with two degrees
of freedom [40, page 177], so that

δY = u2(x1)Z,

where Z has PDF

gZ(z) = χ2
2(z) = e−z/2/2.

F.2.3 The application of a general formula [40,
pages 57–61] for the PDF gY (η) of a differentiable and
strictly decreasing function of a variable (here Z) with
a specified PDF yields

gY (η) =
1

u2(x1)
χ2

2

(
η

u2(x1)

)
=

1
2u2(x1)

exp
(
− η

2u2(x1)

)
, η ≥ 0.

F.2.4 The expectation of δY is given by

δy = E(δY ) =
∫ ∞

0

ηgY (η) dη = 2u2(x1)

and the variance

u2(δy) = V(δY ) =
∫ ∞

0

(η − y)2gY (η) dη = 4u4(x1),

i.e. the standard deviation is 2u2(x1), results that are
consistent with those in subclause F.1.

F.2.5 By integration, the corresponding distribution
function is

GY (η) = 1− exp
(
− η

2u2(x1)

)
, η ≥ 0. (46)
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F.2.6 Let δyα be that η in expression (46) corre-
sponding to GY (η) = α for any α satisfying 0 ≤ α ≤
1− p. Then

δyα = −2u2(x1) ln(1− α)

and a 100p % coverage interval for δY (subclause 7.7) is

[δyα, δyp+α] ≡ (47)
[−2u2(x1) ln(1− α), − 2u2(x1) ln(1− p− α)]

with length

H(α) = −2u2(x1) ln
(

1− p

1− α

)
.

F.2.7 The shortest 100p % coverage interval is given
by determining α to minimize H(α) (subclause 5.3.4).
Since H(α) is a strictly increasing function of α for 0 ≤
α ≤ 1 − p, H(α) is minimized when α = 0. Thus, the
shortest 100p % coverage interval for δY is

[0, − 2u2(x1) ln(1− p)].

For u(x1) = 0.005, the shortest 95 % coverage interval
is

[0, 0.000 149 8].

F.2.8 The 95 % probabilistically symmetric cover-
age interval for δY is given by setting α = (1 − p)/2
(subclause 5.3.3), i.e.

[−2u2(x1) ln 0.975, − 2u2(x1) ln 0.025]
= [0.000 003 9, 0.000 184 4],

which is 20 % longer than the shortest 95 % coverage
interval.

NOTE The above analysis is indicative of an analytical ap-
proach that can be applied to some problems of this type.
In this particular case, the results could in fact have been
obtained more directly, since gY (η) is strictly increasing and
the shortest coverage interval is always in the region of high-
est density.

F.3 GUM uncertainty framework applied
to the comparison loss problem

F.3.1 Uncorrelated input quantities

F.3.1.1 The comparison loss problem considered in
subclause 9.4 has as the model of measurement

δY = f(X) = f(X1, X2) = X2
1 + X2

2 ,

where X1 and X2 are assigned Gaussian PDFs having
expectations x1 and x2 and variances u2(x1) and u2(x2),
respectively.

F.3.1.2 The application of GUM subclause 5.1.1
gives

δy = x2
1 + x2

2

as the estimate of δY . The only non-trivially non-zero
partial derivatives of the model are, for i = 1, 2,

∂f

∂Xi
= 2Xi,

∂2f

∂X2
i

= 2.

F.3.1.3 Hence the application of GUM sub-
clause 5.1.2 gives, for the standard uncertainty u(δy),

u2(δy) =

[(
∂f

∂X1

)2

u2(x1)

+
(

∂f

∂X2

)2

u2(x2)

]∣∣∣∣∣
X=x

= 4x2
1u

2(x1) + 4x2
2u

2(x2), (48)

based on a first-order Taylor series approximation
of f(X). If the non-linearity of f is signifi-
cant [GUM 5.1.2 note], the term

1
2

[
∂2f

∂X2
1

+
∂2f

∂X2
2

]∣∣∣∣
X=x

u2(x1)u2(x2)

needs to be appended to formula (48), in which case
formula (48) becomes

u2(δy) = 4x2
1u

2(x1)+4x2
2u

2(x2)+4u2(x1)u2(x2). (49)

F.3.1.4 A 95 % coverage interval for δY is given by

δy ± 2u(δy),

as a consequence of δY having a Gaussian PDF.

F.3.2 Correlated input quantities

F.3.2.1 When the input quantities are correlated,
the uncertainty matrix for the best estimates of the in-
put quantities is given in formulae (29), where the cor-
relation coefficient r = r(x1, x2) is specified and is in
general non-zero (subclause 9.4.1.3).

F.3.2.2 The application of GUM subclause 5.2.2
gives

u2(δy) =

[(
∂f

∂X1

)2

u2(x1) +
(

∂f

∂X2

)2

u2(x2)

+ 2
∂f

∂X1

∂f

∂X2
r(x1, x2)u(x1)u(x2)

]∣∣∣∣
X=x

= 4x2
1u

2(x1) + 4x2
2u

2(x2)
+ 8r(x1, x2)x1x2u(x1)u(x2). (50)
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Annex G
Glossary of principal symbols

A random variable representing the lower
limit of a rectangular distribution with
inexactly prescribed limits

a lower limit of the interval in which a
random variable is known to lie

midpoint of the interval in which
the lower limit A of a rectangular
distribution with inexactly prescribed
limits is known to lie

B random variable representing the upper
limit of a rectangular distribution with
inexactly prescribed limits

b upper limit of the interval in which a
random variable is known to lie

midpoint of the interval in which
the upper limit B of a rectangular
distribution with inexactly prescribed
limits is known to lie

CTrap(a, b, d) rectangular distribution with inexactly
prescribed limits (curvilinear trapezoid
distribution) with parameters a, b, and
d

Cov(Xi, Xj) covariance for two random variables Xi

and Xj

c ndig-decimal digit integer

ci ith sensitivity coefficient, obtained as
the partial derivative of the model f for
the measurement with respect to the ith
input quantity Xi evaluated at the vec-
tor estimate x of the vector input quan-
tity X

d semi-width of the intervals in which the
lower and upper limits A and B of a
rectangular distribution with inexactly
prescribed limits are known to lie

dhigh absolute value of the difference between
the right-hand endpoints of the cover-
age intervals provided by the GUM un-
certainty framework and a Monte Carlo
method

dlow absolute value of the difference between
the left-hand endpoints of the coverage

intervals provided by the GUM uncer-
tainty framework and a Monte Carlo
method

E(X) expectation of a random variable X

E(X) vector expectation of a vector random
variable X

E(Xr) rth moment of a random variable X

Ex(λ) exponential distribution with parame-
ter λ

f mathematical model of measurement,
expressed as a functional relationship
between an output quantity Y and
the input quantities X1, . . . , XN on
which Y depends

G discrete representation of the distrib-
ution function GY (η) for the output
quantity Y from a Monte Carlo proce-
dure

G(α, β) gamma distribution with parameters α
and β

gX(ξ) probability density function with vari-
able ξ for the random variable X

gX(ξ) joint (multivariate) probability density
function with vector variable ξ for the
vector input quantity X

gXi
(ξi) probability density function with vari-

able ξi for the input quantity Xi

GY (η) distribution function with variable η for
the output quantity Y

G̃Y (η) continuous approximation to the distri-
bution function GY (η) for the output
quantity Y

gY (η) probability density function with vari-
able η for the output quantity Y

g̃Y (η) derivative of G̃Y (η) with respect to η,
providing a numerical approximation to
the probability density function gY (η)
for the output quantity Y

kp coverage factor corresponding to the
coverage probability p

` integer in the representation c × 10` of
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a numerical value, where c is a ndig-
decimal digit integer

M number of Monte Carlo trials

N number of input quantities X1, . . . , XN

N(0, 1) standard Gaussian distribution

N(µ, σ2) Gaussian distribution with parame-
ters µ and σ2

N(µ,V ) multivariate Gaussian distribution with
parameters µ and V

n number of indications in a series

ndig number of significant decimal digits re-
garded as meaningful in a numerical
value

p coverage probability

q number of objects counted in a sample
of specified size

integer part of pM + 1/2

R upper triangular matrix

R(0, 1) standard rectangular distribution over
the interval [0, 1]

R(a, b) rectangular distribution over the inter-
val [a, b]

r(xi, xj) correlation coefficient associated with
the estimates xi and xj of the input
quantities Xi and Xj

s standard deviation of a series of n indi-
cations x1, . . . , xn

sp pooled standard deviation obtained
from several series of indications

sz standard deviation associated with the
average z of the values z(1), . . . , z(h)

in an adaptive Monte Carlo procedure,
where z may denote an estimate y of
the output quantity Y , the standard
uncertainty u(y) associated with y, or
the left-hand endpoint ylow or right-
hand endpoint yhigh of a coverage in-
terval for Y

T(a, b) triangular distribution over the inter-
val [a, b]

Trap(a, b, β) trapezoidal distribution over the inter-
val [a, b] with parameter β

tν central t-distribution with ν degrees of
freedom

tν(µ, σ2) scaled and shifted t-distribution with
parameters µ and σ2, and ν degrees of
freedom

U(0, 1) standard arc sine (U-shaped) distribu-
tion over the interval [0, 1]

U(a, b) arc sine (U-shaped) distribution over
the interval [a, b]

Up expanded uncertainty corresponding to
a coverage probability p

Ux uncertainty matrix associated with the
vector estimate x of the vector input
quantity X

u(x) vector (u(x1), . . . , u(xN ))T of standard
uncertainties associated with the vector
estimate x of the vector input quan-
tity X

u(xi) standard uncertainty associated with
the estimate xi of the input quantity Xi

u(xi, xj) covariance associated with the esti-
mates xi and xj of the input quanti-
ties Xi and Xj

u(y) standard uncertainty associated with
the estimate y of the output quantity Y

u(ỹ) standard uncertainty associated with ỹ

uc(y) combined standard uncertainty associ-
ated with the estimate y of the output
quantity Y

ui(y) ith uncertainty component of the stan-
dard uncertainty u(y) associated with
the estimate y of the output quantity Y

V covariance (variance-covariance) matrix

V(X) variance of a random variable X

V(X) covariance matrix for the vector random
variable X

w semi-width (b−a)/2 of an interval [a, b]

X random variable
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X vector (X1, . . . , XN )T of input quanti-
ties on which the output quantity Y de-
pends

Xi ith input quantity on which the output
quantity Y depends

x estimate (expectation) of the random
variable X

x vector estimate (vector expecta-
tion) (x1, . . . , xN )T of the vector input
quantity X

x̄ average of a series of n indica-
tions x1, . . . , xn

xi estimate (expectation) of the input
quantity Xi

ith indication in a series

xi,r rth Monte Carlo draw from the proba-
bility density function for the ith input
quantity Xi

xr rth Monte Carlo draw, containing val-
ues x1,r, . . . , xN,r, drawn from the prob-
ability density functions for the N input
quantities X1, . . . , XN or from the joint
probability density function for the vec-
tor input quantity X

Y (scalar) output quantity

y estimate (expectation) of the output
quantity Y

ỹ estimate of the output quantity Y , ob-
tained as the average of the M model
values yr from a Monte Carlo run or
as the expectation of the output quan-
tity Y characterized by the probability
density function g̃Y (η)

yhigh right-hand endpoint of a coverage inter-
val for the output quantity Y

ylow left-hand endpoint of a coverage interval
for the output quantity Y

yr rth model value f(xr)

y(r) rth model value after sorting the M
model values yr into non-decreasing or-
der

z(h) hth value in an adaptive Monte Carlo
procedure, where z may denote an esti-
mate y of the output quantity Y , the
standard uncertainty u(y) associated
with y, or the left-hand endpoint ylow

or right-hand endpoint yhigh of a cover-
age interval for Y

α probability value

parameter of a gamma distribution

β parameter of a trapezoidal distri-
bution equal to the ratio of the top
width of the trapezoid to the base width

parameter of a gamma distribution

Γ(z) gamma function with variable z

δ numerical tolerance associated with a
numerical value

δ(z) Dirac delta function with variable z

η variable describing the possible values
of the output quantity Y

λ1 top semi-width of the trapezoid for a
trapezoidal distribution

λ2 base semi-width of the trapezoid for a
trapezoidal distribution

µ expectation of a quantity characterized
by a probability distribution

ν degrees of freedom of a t-distribution or
a chi-squared distribution

νeff effective degrees of freedom associated
with the standard uncertainty u(y)

νp degrees of freedom associated with a
pooled standard deviation sp obtained
from several series of indications

ξ variable describing the possible values
of the random variable X

ξ vector variable (ξ1, . . . , ξN )T describing
the possible values of the vector input
quantity X

ξi variable describing the possible values
of the input quantity Xi

54 c© JCGM 2006— All rights reserved



JCGM YYY:2006

σ standard deviation of a quantity char-
acterized by a probability distribution

σ2 variance (squared standard deviation)
of a quantity characterized by a prob-
ability distribution

Φ phase of a quantity that cycles sinu-
soidally

χ2
ν chi-squared distribution with ν degrees

of freedom
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