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Foreword

In 1997 a Joint Committee for Guides in Metrol-
ogy (JCGM), chaired by the Director of the BIPM, was
created by the seven international organizations that
had originally in 1993 prepared the “Guide to the ex-
pression of uncertainty in measurement” (GUM) and the
“International vocabulary of basic and general terms in
metrology” (VIM). The JCGM assumed responsibility
for these two documents from the ISO Technical Advi-
sory Group 4 (TAG4).

The Joint Committee is formed by the BIPM with the
International Electrotechnical Commission (IEC), the
International Federation of Clinical Chemistry and Lab-
oratory Medicine (IFCC), the International Organiza-
tion for Standardization (ISO), the International Union
of Pure and Applied Chemistry (IUPAC), the Interna-
tional Union of Pure and Applied Physics (IUPAP),
and the International Organization of Legal Metrol-
ogy (OIML). A further organization joined these seven
international organizations, namely, the International
Laboratory Accreditation Cooperation (ILAC).

JCGM has two Working Groups. Working Group 1,
“Expression of uncertainty in measurement”, has the
task to promote the use of the GUM and to prepare
Supplements and other documents for its broad appli-
cation. Working Group 2, “Working Group on Interna-
tional vocabulary of basic and general terms in metrol-
ogy (VIM)”, has the task to revise and promote the use
of the VIM. For further information on the activity of
the JCGM, see www.bipm.org.

The present document has been prepared by Working
Group 1 of the JCGM, and has benefited from de-
tailed reviews undertaken by member organizations of
the JCGM and National Metrology Institutes.

Drafting note

This version of Evaluation of measurement data — An
introduction to the “Guide to the expression of uncer-
tainty in measurement” and related documents is not in-
tended to be an advanced draft. Rather, it is hoped that
the Member Organizations and other interested parties
will be prepared to make input and provide constructive
criticism, which Working Group 1 of the JCGM would
be pleased to take into consideration in preparing a new
draft.

The final version of this introductory document will be
web-based, containing hyperlinks to appropriate clauses
and sub-clauses of the GUM and related documents, in-
cluding GUM Supplements, and the VIM. Moreover, it
is intended that the index will, in addition to making
reference to appropriate clauses and sub-clauses of this
document, provide links to relevant information, includ-
ing definitions, in other documents (at the moment spec-
imen links are included to GUM Supplement 1). It will
also provide links to other relevant material, including
that from other organizations, for a broader understand-
ing.

At the moment specimen links are included to

— the websites of the JCGM and its Member Organi-
zations,

— clauses and sub-clauses of the version of GUM Sup-
plement 1 that has been finalized for publication (it
is necessary that this document and GUM Supple-
ment 1 are contained in the same folder or directory
for these links to work), and

— a web-based version of one of the cited references [1]
that is regarded as particularly valuable (sugges-
tions for other such references are welcomed).

Internal links are included in the form of cross-references
to clauses and sub-clauses, to figures, tables and equa-
tions, and to items in the bibliography.
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Introduction

A measurement uncertainty statement is valuable in
judging the fitness for purpose of a measured value. At
the grocery store the customer would be content if, when
buying a kilogram of fruit, the scales gave a value within,
say, 10 grams of that given by a reliable balance. But
the dimensions of parts in the gyroscopes within mod-
ern aircraft guidance systems must be measured to sub-
micrometre accuracy for correct functioning.

Measurement uncertainty can be used to help judge the
consistency of experiment and theory, of different mea-
surement procedures, and of different laboratories. As
the tolerances applied in industrial production become
more demanding, the role of measurement uncertainty
becomes more important when assessing conformance to
these tolerances. Indeed, measurement uncertainty is a
concept central to quality assurance [13].

The other titles in the series of documents prepared by
the JCGM that support the GUM and extend its ap-
plicability include the expression “Evaluation of mea-
surement data”, which embraces

a) concepts and basic principles [4],

b) propagation of distributions using a Monte Carlo
method [5],

c) models with any number of output quantities [6],

d) modelling [7],

e) the role of measurement uncertainty in deciding
conformance to specified requirements [8], and

f) applications of the least-squares method [3].

vi c© JCGM 2007— All rights reserved
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Evaluation of measurement data — An introduction to the
“Guide to the expression of uncertainty in measurement”
and related documents

1 Scope

The Joint Committee for Guides in Metrology (JCGM)
has prepared this introductory document to promote the
sound evaluation of measurement uncertainty through
the use of the GUM and to provide a prelude to
the GUM Supplements and other documents JCGM is
producing [3, 4, 5, 6, 7, 8].

As in the GUM, this document is primarily concerned
with the expression of uncertainty in the measurement
of a well-defined physical quantity — the measurand —
that can be characterized by an essentially unique value.

The purpose of the GUM Supplements and the other
documents is to help with the interpretation of the
GUM and enhance its application. The GUM Supple-
ments and the other documents are together intended
to have a scope that is considerably broader than that
of the GUM.

This document introduces (a) measurement uncertainty,
(b) the GUM, and (c) the GUM Supplements and other
documents that support the GUM.

This introductory document is directed at (a) calibra-
tion, testing and inspection laboratories in industry, and
laboratories such as those concerned with health and the
environment, (b) accreditation bodies, and (c) scientific
disciplines in general. It is hoped that it will also be
useful to designers, because a product specification that
takes better account of inspection requirements (and
the associated measurement) can result in less stringent
manufacturing requirements. It is also directed at acad-
emia, with the hope that more university departments
will include modules on uncertainty evaluation in their
courses. As a result, a new generation of students would
be better armed to understand and provide uncertainty
statements associated with measured values, and hence
gain an improved appreciation of measurement.

This introductory document, the GUM, the GUM Sup-
plements and the other documents should be used
in conjunction with the “International Vocabulary of
Metrology—Basic and General Concepts and Associ-
ated Terms” (VIM).

2 Normative references

The following referenced documents are indispensable
for the application of this document.

BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML.
Guide to the expression of uncertainty in measure-
ment (GUM). ISBN 92-67-10188-9. International Or-
ganization for Standardization, Geneva, corrected and
reprinted 1995.

BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and
OIML. International Vocabulary of Metrology—Basic
and General Concepts and Associated Terms, VIM, 3rd
Edition. International Organization for Standardiza-
tion, Geneva, 2007.

3 What is measurement uncertainty?

3.1 The purpose of measurement is to pro-
vide knowledge of a quantity of interest—a measur-
and [VIM:2007 2.3]. The measurand might be the vol-
ume of a vessel, the electromagnetic radiation from a
domestic appliance, or the concentration of lead in wa-
ter.

3.2 No measurement is perfect in that, when a quan-
tity is measured, the outcome depends on the measure-
ment process comprising the instrument used, the mea-
surement procedure, the skill of the operator, the en-
vironment, and other effects [1]. Even if the quantity
were to be measured several times, in the same way and
in the same circumstances, a different value each time
would in general be obtained.

NOTE This statement assumes that the indication of the
measurement system has sufficient resolution to distinguish
between the values.

3.3 The scatter of the measured values would relate
to the quality of the measurement. The average of the
set of measured values would provide an estimate of the
quantity that generally would be more reliable than each
individual measured value. The scatter and the number
of measured values would provide information relating
to the quality of the average value as an estimate of the
quantity. It would not furnish all the information of this
type, however.

c© JCGM 2007— All rights reserved 1
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3.4 The measuring system [VIM:2007 3.2] may pro-
vide values that are not scattered about the value of the
quantity, but about some value offset from it. Take the
domestic bathroom scales. If they are not set to show
zero when there is nobody on the scales, the indicated
mass of a person would not be correct. No matter how
many times the person’s mass were taken, the effect of
this offset would be inherently present in the average of
the measured values.

NOTE 1 There are several ways of taking an average, but
the choice made does not affect the argument.

NOTE 2 In areas such as biochemistry there is sometimes
no natural counterpart of setting the scales to zero, consid-
erable effort being required to quantify the effect.

3.5 There are thus two main effects, in this ex-
ample and in general. The first is a random ef-
fect [VIM:2007 2.19] associated with the fact that when
a measurement is repeated it will generally provide a
value that is different from the previous value. It is
random in that the next measured value cannot be
predicted from previous measured values. (If a pre-
diction were possible, allowance for the effect could
be made!) The second effect is a systematic ef-
fect [VIM:2007 2.17] (an estimate of which is known as
a bias [VIM:2007 2.18]) associated with the fact that all
the measured values contain an offset. In general, there
can be a number of contributions to each effect. De-
pending on the application, either the random effect or
systematic effect might dominate.

3.6 The above discussion concerns the direct mea-
surement of a particular quantity. However, the physical
quantity actually measured by the instrument is rarely
that required in practice. For instance, the display (in-
dication [VIM:2007 4.1]) on the bathroom scales does
not correspond to the physical measurement. The lat-
ter in that case might be the extension of a spring whose
length varies according to the load (the mass of the per-
son on the scales). The raw measured value is therefore
converted into an estimate of the measurand. For a per-
fect (linear) spring, the conversion is straightforward,
being based on the fact that the required mass is propor-
tional to the extension of the spring. The particular rela-
tionship between the extension of the spring and the dis-
played mass constitutes the calibration [VIM:2007 2.39]
of the scales.

3.7 A relationship such as that in subclause 3.6 con-
stitutes a rule for converting a measured value into that
required. The rule is usually known as a measurement
model [VIM:2007 2.48] or simply a model. There are
very many different types of measurement in practice
and therefore different rules or models. Even for one
particular type of measurement there may well be more
than one model. A simple model (for example a propor-

tional rule, as above) might be sufficient for everyday
domestic use. Alternatively, a sophisticated model in-
volving more complicated calculations that is capable of
delivering better results might be necessary for indus-
trial or laboratory purposes.

3.8 As stated in subclause 3.3, the indications corre-
sponding to repeated measurement may be averaged to
obtain a more reliable value. The situation is frequently
more general in another way. There are often measure-
ments of several different quantities that contribute to
the measurand. Here, the concern is not repetition of
measurement, but measurement of intrinsically different
quantities, for example of temperature, humidity and
displacement.

3.9 In addition to the model being based on a phys-
ical understanding, the model is often augmented by
correction terms [VIM:2007 2.53] to account for the fact
that the conditions of measurement are not exactly as
stipulated. These terms contain quantities (often addi-
tional quantities) that influence the measurement. In-
stances are the measurement of a height, when the at-
titude of the measuring instrument is not exactly verti-
cal, and the ambient temperature is different from that
specified. The attitude of the instrument and the ambi-
ent temperature are not known exactly, but information
concerning them is available, for example that the am-
bient temperature at the time of measurement differed
from that stipulated by no more than 2 ◦C.

3.10 As well as raw data representing measured
quantities, there is another form of data that is fre-
quently needed to apply a model. Some such data re-
lates to quantities representing physical constants, each
of which is known imperfectly. Examples are material
constants such as modulus of elasticity and specific heat.
There is often other relevant data given in text books,
calibration certificates, etc., regarded as estimates of
further quantities.

3.11 The items required by a model to define a mea-
surand are known as input quantities [VIM:2007 2.50].
The rule or model is often referred to as a functional re-
lationship [GUM:1995 4.1], because it is the use of phys-
ical modelling of a measurement, with correction and
other terms, as necessary, that enables the model to be
established. The model output quantity [VIM:2007 2.51]
is the measurand.

3.12 Formally, the output quantity, denoted by Y ,
about which information is required, is related function-
ally to input quantities, denoted by X1, . . . , XN , about
which information is available, by a model

Y = f(X1, . . . , XN ) = f(X), (1)

where the vector of the Xi is denoted by X.

2 c© JCGM 2007— All rights reserved
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NOTE 1 A more general form of model can be expressed
as

h(Y, X1, . . . , XN ) = 0. (2)

In this case, a value of Y is given by solving the model given
values of X1, . . . , XN , whereas expression (1) constitutes a
formula that can be evaluated given values of X1, . . . , XN .

NOTE 2 Model (1) is known as explicit and model (2) as
implicit.

3.13 Consider estimates x1, . . . , xN , respectively,
of X1, . . . , XN , obtained from the analysis of measure-
ment data, certificates and reports, manufacturers’ spec-
ifications, and so on. These estimates are particular val-
ues of X1, . . . , XN regarded as random variables. These
random variables are characterized by probability dis-
tributions that describe the relative likelihood of their
values lying in different intervals. These probability dis-
tributions are deduced from available knowledge con-
cerning X1, . . . , XN .

3.14 For each Xi, the corresponding probability
distribution has the property that the estimate xi

of Xi is the expectation [GUMS1:2007 3.6] (mean)
of Xi. Moreover, the uncertainty of measurement,
or, more precisely, standard (measurement) uncer-
tainty [VIM:2007 2.30], which is given the symbol u(xi),
is defined as the standard deviation [GUMS1:2007 3.8]
of Xi. This standard uncertainty is said to be associated
with the (corresponding) estimate.

NOTE 1 The rationale for using the expectation of Xi is
that xi is the best estimate of Xi in the sense that the stan-
dard uncertainty associated with any other estimate is larger
than u(xi), the standard deviation of Xi.

NOTE 2 For a quantity characterized by an asymmetric
probability distribution, the expectation is generally not
equal to the mode, and so the estimate xi of Xi is not the
most probable value, although it has the smallest possible
associated standard uncertainty.

3.15 The use of available knowledge to establish a
probability distribution to characterize each quantity of
interest applies to the Xi and also to Y . In the latter
case, the characterizing probability distribution for Y is
determined by the functional relationship (1) together
with the probability distributions for the Xi. The de-
termination of the probability distribution for Y from
this information is known as the propagation of distrib-
utions [GUMS1:2007 5.2].

3.16 Other (prior) knowledge about Y , or about
any other non-observable quantities that appear in the
model, if available, can also be taken into account. Re-
turning again to the domestic bathroom scales, the fact
that the person’s mass must be positive, or that it is
the mass of a person, rather than that of a motor car,
that is being measured, both constitute prior knowledge

about the possible values of the measurand in this ex-
ample. Bayes’ theorem provides the means to combine
prior information about Y , expressed as a probability
distribution for Y , with the information that the mea-
surement data provides about Y [2, 11].

4 Concepts and basic principles

4.1 A document [4] provides a brief introduction to
the fundamental concepts and principles of probability
theory that underlie the approach to evaluation and ex-
pression of measurement uncertainty.

4.2 Uncertainty of measurement is de-
fined [VIM:2007 2.26] as

non-negative parameter characterizing the dis-
persion of the quantity values being attributed
to a measurand, based on the information used

This definition is consistent with the considerations of
subclauses 3.13–3.16.

4.3 Two forms for a probability distribution
[GUMS1:2007 3.1] are used in uncertainty eval-
uation: the probability density function (PDF)
[GUMS1:2007 3.3] and the distribution function
[GUMS1:2007 3.2].

4.4 Knowledge of each input quantity Xi is often
summarized by xi and u(xi). Some of the input quan-
tities may be related to each other, in which case the
summary information will also include covariances (sub-
clause 7.5.3). cov(xi, xj) denotes the covariance associ-
ated with xi and xj , a measure of the strength of the
relationship between Xi and Xj . If Xi and Xj are in-
dependent, cov(xi, xj) = 0.

4.5 The evaluation of measurement data, in the con-
text of the model (1), is the use of knowledge available
concerning the input quantities X1, . . . , XN to deduce
properties of the output quantity Y .

4.6 In general, knowledge about an input quantity
is inferred from repeated indications (Type A evalua-
tion) [GUM:1995 4.2], or scientific judgement or knowl-
edge concerning the possible values of the quantity
(Type B evaluation) [GUM:1995 4.3].

4.7 For a Type A evaluation of uncer-
tainty [VIM:2007 2.28], it is frequently asserted
that the quantity of which the average of repeated in-
dications (obtained independently) is a particular value
follows a Gaussian distribution (figure 1, continuous
curve). The assertion can be justified on the basis

c© JCGM 2007— All rights reserved 3
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that, for a large number of indications, the central
limit theorem of statistics applies [GUM:1995 G.2].
Other considerations would apply when the number of
indications is small (a t-distribution can be used), or
when the indications are not obtained independently.

Figure 1 — A Gaussian distribution and (broken

curve) a t-distribution. The particular distributions

shown here have the same expectation and the same

standard deviation.

4.8 For a Type B evaluation of uncer-
tainty [VIM:2007 2.29], it is commonly the case
that the only available information is that the quantity
lies in a specified interval [a, b]. In such circum-
stances, the quantity can be characterized by a
rectangular PDF [GUM:1995 4.3.7] with limits a and b
(figure 2) [14]. If different information were available,
a PDF consistent with that information would be used.

NOTE The principle of maximum (information) entropy
(PME) provides a way to assign a PDF to a quantity that
agrees with what is known (or reasonably believed to be
true), but otherwise avoids any unjustified assumptions with
respect to knowledge about the quantity.

Figure 2 — Rectangular PDF with limits a and b.

4.9 Once the input quantities Xi have been charac-
terized by appropriate PDFs, and the model has been
developed, the PDF for the measurand Y is fully speci-
fied in terms of this information. In particular, the ex-
pectation of Y , as described by its PDF, can be used as
the estimate y of Y , and the standard deviation of Y as
the standard uncertainty u(y) associated with y. Often

a coverage interval for Y is also required. Such an in-
terval is one in which a specified fraction of the possible
values of Y can be expected to lie. A coverage interval
can also be deduced from the PDF for Y .

4.10 As a simple example, figure 3 depicts the
model Y = X1 + X2 in the case where X1 and X2 are
each characterized by a (different) rectangular PDF. Y
has a trapezoidal PDF in this case.

-

-

Y = X1 + X2
-

�
� @

@

Figure 3 — Illustration of an additive model with

two input quantities X1 and X2, each of which is

characterized by a (different) rectangular PDF. The

PDF for the measurand Y is a symmetric trapezoidal

PDF.

4.11 A coverage interval [VIM:2007 2.36] is an in-
terval containing the value of a quantity with a stated
coverage probability [VIM:2007 2.37]. It is not unique,
two important coverage intervals being

a) the probabilistically symmetric coverage inter-
val [GUMS1:2007 3.15], namely the coverage inter-
val for a quantity such that the probability that the
quantity is less than the smallest value in the inter-
val is equal to the probability that the quantity is
greater than the largest value in the interval, and

b) the shortest coverage interval [GUMS1:2007 3.16],
namely the coverage interval for a quantity with
shortest length among all coverage intervals for that
quantity having the same coverage probability.

4.12 Figure 4 shows the chi-squared distribution
with two degrees of freedom (exponentially decreasing
curve) with the endpoints of the shortest (continuous
vertical lines) and those of the probabilistically sym-
metric (broken vertical lines) 80 % coverage intervals for
a quantity characterized by this distribution. The dis-
tribution is asymmetric and the two coverage intervals
are different (most notably their right-hand endpoints),
with the length of the former interval about three quar-
ters of that of the latter. The shortest coverage interval
has its left-hand endpoint at zero, the smallest possible
value for the quantity.

NOTE 1 The probability distribution in figure 4 would be
the PDF for Y for the model Y = X2

1 +X2
2 , where X1 and X2

4 c© JCGM 2007— All rights reserved
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are independent and characterized by standard Gaussian
(normal) distributions.

NOTE 2 The coverage probability is chosen as 80 % for
visual purposes. For higher coverage probabilities the left-
hand endpoints of the two coverage intervals are almost in-
distinguishable to graphical resolution.

Figure 4 — The shortest (continuous vertical lines)

and probabilistically symmetric (broken vertical

lines) 80 % coverage intervals for a quantity char-

acterized by a chi-squared distribution with two de-

grees of freedom (exponentially decreasing curve).

4.13 Sensitivity coefficients c1, . . . , cN describe how
the estimate y of Y would be influenced by small changes
in the estimates x1, . . . , xN , respectively, of the input
quantities X1, . . . , XN . For the model (1), ci is taken
as the partial derivative of first order of f with respect
to Xi evaluated at X1 = x1, . . . , XN = xN . For the
linear model

Y = c1X1 + · · · + cNXN , (3)

in which the Xi are independent, a change in xi equal
to u(xi) would give a change ciu(xi) in y. This state-
ment would generally be approximate for the model (1).
The relative magnitudes of the terms |ci|u(xi) are use-
ful in assessing the respective contributions to u(y) from
each input quantity.

5 Stages of uncertainty evaluation

5.1 The main stages of uncertainty evaluation con-
stitute formulation and calculation, the latter consisting
of propagation and summarizing.

5.2 The formulation stage (clause 6) constitutes

a) defining the output quantity Y (the measurand),

b) determining the input quantities X1, . . . , XN on
which Y depends,

c) developing a model relating Y to the Xi, and

d) on the basis of available knowledge, assign-
ing PDFs—Gaussian, rectangular, etc.—to the Xi

(or a joint PDF to those Xi that are not indepen-
dent).

5.3 The calculation stage (clause 7) consists of prop-
agating the PDFs for the Xi through the model to ob-
tain the PDF for Y , and summarizing by using the PDF
for Y to obtain

a) the expectation of Y , taken as an estimate y of Y ,

b) the standard deviation of Y , taken as the
standard uncertainty u(y) associated with y
[GUM:1995 E.3.2], and

c) a coverage interval containing Y with a specified
probability (the coverage probability).

6 Formulation

6.1 The formulation stage of uncertainty evaluation
involves building a mathematical model of the mea-
surement, incorporating correction and other effects as
necessary. It also involves using available knowledge
to characterize the model input quantities by PDFs.
Model-building aspects are considered in this clause.
GUM Supplement 3 [7] provides guidance on developing
and working with a model of measurement. The assign-
ment of PDFs is considered in GUM Supplement 1 [5].

6.2 A model relating the input quantities X to the
output quantity Y is initially built. In many cases, there
might be more than one output quantity, Y1, . . . , Ym,
collectively denoted by Y . The model is formed on
physical or empirical grounds, or a hybrid model is de-
veloped. Such a model generally depends strongly on
the metrology discipline, electrical, dimensional, ther-
mal, etc. The model is then augmented by additional
terms, constituting further input quantities, which de-
scribe various effects that influence the measurement.
These effects may be categorized into random and sys-
tematic effects, or in other ways. Guidance is provided
on handling these additional effects.

6.3 Attention is paid to discrete and continuous mod-
els, the former including algebraic models such as those
addressed explicitly in the GUM, and the latter mod-
els such as finite element models used in solving partial
differential equations.
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6.4 The model is categorised according to whether
(a) the quantities involved are real or complex, (b) the
model is explicit or implicit (subclauses 3.12, note 2
and 7.5.5), and (c) Y is univariate or multivariate (sub-
clause 7.5.1). With regard to category (a), complex
quantities occur especially in electrical metrology, but
also in acoustical and optical metrology and elsewhere.
In category (b), the model is classified as explicit if Y
can be expressed directly as formulae in terms of X,
and implicit otherwise, that is as an equation to be
solved for Y in terms of X (subclause 7.5.1). Regarding
category (c), a univariate model, the model primarily
treated in the GUM, is a model having a single (scalar)
output quantity. A multivariate model has any number
of output quantities, that is a vector quantity.

6.5 Examples from a range of metrology disciplines
illustrate the various aspects of GUM Supplement 3 [7].
Guidance on numerical analysis issues that arise, for
example appropriate matrix computation, in treating
these examples is given. This guidance includes the use
of model re-parametrization, viz., the use of changes of
variables so that all or some of the resulting quantities
are uncorrelated or only weakly correlated.

6.6 Multistage models, where the output quantities
from previous stages become the input quantities to sub-
sequent stages, are also treated. Arguably the common-
est example of a multistage model is a calibration curve,
in which the following operations are typically carried
out (see figure 5):

a) The determination of a calibration curve by mod-
elling measured stimulus and response values by a
suitable mathematical form. The uncertainties as-
sociated with the measured data values give rise to
uncertainties associated with the estimates of the
coefficients of the curve;

b) The evaluation of the calibration curve at subse-
quently measured response values to provide stim-
ulus value predictions. The uncertainties associated
with the estimates of the coefficients of the curve,
together with the uncertainties associated with the
new measured response values, give rise to uncer-
tainties associated with the stimulus value predic-
tions.

measured
stimulus
and response
values

?

calibration
curve
coefficients

?

new
measured
response
values

stimulus
value
predictions

Figure 5 — A multistage model for calibration

curves. The measurement data is used to estab-

lish the coefficients of the calibration curve. The

functional form for the calibration curve, containing

these coefficients, together with subsequently mea-

sured response values, is used to provide stimulus

value predictions from the curve corresponding to

these response values.

7 The calculation (propagation and
summarizing) stage of uncertainty
evaluation

7.1 General

7.1.1 The propagation stage of uncertainty eval-
uation is known as the propagation of distribu-
tions [GUMS1:2007 5.2].

7.1.2 Various approaches for the propagation stage
are available, including

a) the GUM uncertainty framework, constituting the
application of the law of propagation of uncertainty,
and the characterization of Y by a Gaussian or t-
distribution (subclause 7.2),

b) analytic methods, in which mathematical analysis
is used to derive the PDF for Y (subclause 7.3),
and

c) a Monte Carlo method, in which an approximation
to the PDF or the distribution function for Y is

6 c© JCGM 2007— All rights reserved
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established numerically by making random draws
from the PDFs for the Xi (subclause 7.4).

7.1.3 In terms of the uncertainty evaluation problem
defined by the model (1) and the PDFs for the input
quantities Xi, approach a) in subclause 7.1.2 is gener-
ally approximate, approach b) is exact, and approach c)
provides a solution with a numerical accuracy that can
be controlled.

7.1.4 For any particular uncertainty evaluation prob-
lem, approach a), b) or c), or some other approach, is
selected.

7.1.5 The application of approaches a) and c) to
models with any number of output quantities, and mod-
els that define the output quantities implicitly in terms
of the input quantities, is considered in subclause 7.5.

7.2 The GUM uncertainty framework

7.2.1 The GUM uncertainty frame-
work [GUM:1995 5.1.2] (figure 6) uses

a) the expectations of the Xi as best estimates xi of
the Xi,

b) the standard deviations of the Xi as the standard
uncertainties u(xi) associated with the xi, and

c) the sensitivity coefficients ci (subclause 4.13)

to form an estimate y of Y and the associated
standard uncertainty u(y) [GUM:1995 5.1]. Vari-
ants [GUM:1995 5.2] apply to instances where the Xi

are mutually dependent (not indicated in figure 6) and
the degrees of freedom relating to the u(xi) are finite.
By regarding the PDF for Y as Gaussian, a coverage in-
terval for Y corresponding to a specified coverage prob-
ability is also determined [GUM:1995 G.2]. When the
degrees of freedom relating to the u(xi) are finite, an
(effective) degrees of freedom relating to u(y) is accord-
ingly determined, and the PDF for Y is regarded as a
scaled and shifted t-distribution.

7.2.2 There are many circumstances where the GUM
uncertainty framework [GUM:1995 5.1.2] can be applied
and leads to valid statements of uncertainty.

7.2.3 If the model is linear in the Xi and the PDFs
for the Xi are Gaussian, the GUM uncertainty frame-
work provides exact results. Even when these conditions
do not hold, the approach can often work sufficiently
well for practical purposes.

7.2.4 There are circumstances where the GUM un-
certainty framework might not be satisfactory, includ-
ing (a) the uncertainty contributions |ci|u(xi) (sub-
clause 4.13) are not of approximately the same mag-
nitude [GUM:1995 G.2.2], (b) the PDF for Y is either
asymmetric, or not a Gaussian or a scaled and shifted t-
distribution, (c) the models are far from linear, and
(d) the PDFs for the Xi are asymmetric, for example
when dealing with the magnitudes of complex variables
in electrical metrology. It can sometimes be difficult
to establish in advance that the circumstances hold for
the GUM uncertainty framework to apply.

7.2.5 The use of the GUM uncertainty framework
becomes more difficult when it is necessary to form par-
tial derivatives (or numerical approximations to them)
of a model that is complicated, as needed by the law of
propagation of uncertainty (possibly with higher-order
terms) [GUM:1995 5]. A valid and sometimes more
readily applicable treatment is obtained by applying a
suitable Monte Carlo implementation of the propagation
of distributions.

7.3 Analytic methods

7.3.1 Analytic methods to obtain the PDF for Y
are preferable in that they do not introduce any ap-
proximation. However, they can be applied in relatively
simple cases only. A treatment of such methods is avail-
able [10]. Instances that can be so handled for general N
are linear models (3), where all Xi are Gaussian, or all
are rectangular with the same semi-width.

7.3.2 Cases where N = 1 can often be treated an-
alytically. Such cases are important in the context of
transformation of measurement units, for example from
linear to logarithmic units, or the reverse process.

7.3.3 As an example with N = 2, the form of the
trapezoidal distribution in figure 3, in particular the
breakpoints (where adjacent straight-line pieces inter-
sect), can be determined explicitly in this case from the
expectations and semi-widths (or standard deviations)
of the input quantities [9].

7.3.4 An advantage of an analytic solution is that it
provides insight through displaying the explicit depen-
dence of the PDF for Y on any physically meaningful
parameters.

7.4 Monte Carlo method

7.4.1 A Monte Carlo method (MCM) involves the
following steps (figure 7) for the propagation and sum-
marizing stages of uncertainty evaluation:

c© JCGM 2007— All rights reserved 7
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coverage interval
y ± Up for Y

expanded
uncertainty Up

?

coverage
factor kp

?

effective degrees
of freedom νeff

?

estimate y = f(x)

of Y

?

standard
uncertainty u(y)

?

?

sensitivity
coefficients c

?

?

partial derivatives
of model

?

model
Y = f(X)

?

?

estimates
x of X

?

?

standard
uncertainties u

?

?

degrees of
freedom ν

?

coverage
probability p

?

Inputs

Outputs

Output

Figure 6 — Uncertainty evaluation using the GUM uncertainty framework. The part of the figure above the

broken horizontal line relates to obtaining an estimate y of the output quantity Y and the associated standard

uncertainty u(y). The part below the line relates to the determination of a coverage interval for Y . In the

figure, x denotes the vector containing the xi, u similarly for the u(xi), ν for the corresponding degrees of

freedom νi (some or all of which might be infinite), and c for the ci. Other terms are as defined in the text.
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a) Select a number M of Monte Carlo trials;

b) Carry out the following steps for each value of r
from 1 to M :

1) Make a random draw from each of the PDFs
for the Xi, for i = 1, . . . , N ;

2) Evaluate the model (1) at the values of the Xi

so obtained to give the model value yr;

c) Sort the values yr, for r = 1, . . . ,M , into non-
decreasing order, to provide a discrete representa-
tion G of the probability distribution for Y . Denote
the sorted values by y(r), for r = 1, . . . ,M ;

d) Approximate y by the average of the yr;

e) Approximate u(y) by the standard deviation of
the yr;

f) Form a coverage interval [ylow, yhigh] for Y , select-
ing the endpoints ylow and yhigh such that 100p %
of the values of y(r) lie between them. Depending
on how the endpoints are selected, the probabilis-
tically symmetric coverage interval or the shortest
coverage interval (subclause 4.11) or some other in-
terval can be formed.

7.4.2 GUM Supplement 1 [5] provides detailed in-
formation on MCM as an implementation of the prop-
agation of distributions. It gives examples to compare
it with the use of the GUM uncertainty framework. It
also provides an adaptive MCM procedure, in which the
number M of Monte Carlo trials is determined automat-
ically.

7.4.3 MCM has relatively few conditions associated
with its use.

7.4.4 Sometimes it is unclear whether the application
of the GUM uncertainty framework in any particular
case is valid. A validation procedure can be used to
check its adequacy. The procedure assesses the extent
to which the GUM uncertainty framework provides y,
u(y) and a coverage interval for Y that are compatible
(to within a stipulated numerical tolerance) with the
corresponding results provided by MCM.

7.4.5 If the comparison is favourable it can reason-
ably be concluded that the GUM uncertainty framework
is valid in that circumstance. It does not imply that it
would be valid for (a) a different coverage probability,
(b) the same model with different estimates of the input
quantities, or (c) a modified model. If the comparison is
unfavourable, the use of MCM could be considered for
such uncertainty evaluations in the future.

7.5 Models with any number of output
quantities

7.5.1 The GUM and GUM Supplement 1 [5] con-
centrate on measurement models having a single output
quantity Y , that is univariate (scalar) models. Many
measurement problems arise, however, for which there
is more than one output quantity, depending on a com-
mon set of input quantities. These output quantities are
denoted by Y1, . . . , Ym and the vector containing these
quantities by Y . The models of measurement that ap-
ply in such circumstances are referred to as multivariate
models. Instances include (a) an output quantity that is
complex, and represented in terms of its real and imagi-
nary components (or magnitude and phase), (b) the co-
efficients of a calibration curve, and (c) parameters de-
scribing the geometry of the surface of an artefact. The
GUM does not directly address such models, although
examples are given concerning simultaneous resistance
and reactance measurement [GUM:1995 H.2] and ther-
mometer calibration [GUM:1995 H.3].

7.5.2 The counterpart of the model (1) is

Y1 = f1(X1, . . . , XN ),
Y2 = f2(X1, . . . , XN ),

... (4)
Ym = fm(X1, . . . , XN ),

in which there are m model functions f1, . . . , fm. Fig-
ure 8 illustrates a model with three input quantities X1,
X2 and X3, two model functions f1 and f2, and hence
two measurands Y1 and Y2.

X1
-

X2 -

X3 -

Y1 = f1(X1, X2, X3)

Y2 = f2(X1, X2, X3)

- Y1

- Y2

Figure 8 — Illustration of a model with three input

quantities X1, X2 and X3, two model functions f1

and f2, and hence two measurands Y1 and Y2.

7.5.3 The formulation phase of uncertainty evalu-
ation is consistent with that for a model with a sin-
gle measurand: it comprises developing a multivari-
ate model of the form (4), and assigning PDFs to the
input quantities based on available knowledge. How-
ever, for each i = 1, . . . ,m, there is now an esti-
mate yi of Yi and a standard uncertainty u(yi) associ-
ated with yi. Furthermore, since in general each Yi de-
pends on all X1, . . . , XN , there will typically be non-zero
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coverage interval [ylow, yhigh]

for Y

?

estimate y of Y

associated standard uncertainty u(y)

?

discrete representation G of the
distribution function for Y

?

M model values
y = (y1, . . . , yM ) = (f(x1), . . . , f(xM ))

?

M draws x1, . . . , xM

of X from gX(ξ)

?

model
Y = f(X)

?

probability density

functions gX(ξ)

?

number M of
Monte Carlo trials

?

coverage
probability pInputs

Outputs

Figure 7 — Uncertainty evaluation using a Monte Carlo method. In the figure, gX(ξ) denotes the (joint) PDF

for the input quantities X. Other terms are as defined in the caption to figure 6 and the text.
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covariances cov(yi, yj) for all values of i and j from 1
to m.

7.5.4 In order to evaluate the uncertainties associ-
ated with a (vector) estimate y of the multivariate out-
put quantity Y for such models, the GUM uncertainty
framework and MCM for undertaking the propagation
of distributions, as treated in GUM Supplement 1 [5],
require extension. The GUM outlines such an extension,
but considers it further only in examples.

7.5.5 In GUM Supplement 2 [6], a first step is to
demonstrate that the law of propagation of uncertainty,
a main constituent of the GUM uncertainty framework,
can succinctly be expressed in an equivalent matrix form
when applied to a univariate model. The matrix ex-
pression has the advantage of being particularly suit-
able (a) as the basis for implementation in software,
and (b) for extension to more general types of mea-
surement model. The extensions to a bivariate model
(as a particular instance of a multivariate model) and a
general multivariate model are provided. Furthermore,
consideration is given to measurement models that are
distinguished as explicit, that is in which the measure-
ment model takes the form of formulae for Y in terms of
the input quantities X, or implicit, that is in which X
and Y are related by equations or other relationships
and such that Y cannot conveniently be expressed ex-
plicitly in terms of X.

7.5.6 GUM Supplement 2 [6] also applies MCM to
multivariate models. The counterpart of the discrete
representation G of the probability distribution for the
output quantity in the univariate case is provided. Ex-
pressions are given for the estimate y of Y , and the
variances and covariances associated with the compo-
nents of y, in terms of that representation.

7.5.7 The GUM uncertainty framework provides a
coverage interval (in terms of an expanded uncertainty)
for a univariate output quantity Y , given a coverage
probability, by characterizing Y by a Gaussian distri-
bution (or a scaled and shifted t-distribution) (sub-
clause 7.2.1). GUM Supplement 1 [5] generalizes this
concept to any distribution for a univariate output quan-
tity, considering two coverage intervals in particular: the
probabilistically symmetric coverage interval and the
shortest coverage interval (subclause 7.4.1). There is
no natural counterpart for multivariate models in the
form of a coverage region of the former coverage inter-
val, whereas there is for a shortest coverage interval.
However, in addition to the determination of a smallest
coverage region being a much more difficult task in the
multivariate case, it is expected that, even if it were pro-
vided, the metrologist would not generally find it par-
ticularly useful. GUM Supplement 2 [6] provides prob-
abilistically symmetric or shortest coverage intervals for

individual output quantities or linear combinations of
the output quantities. Such coverage intervals are often
expected to be more practical than coverage regions.

7.5.8 In some circumstances, it is reasonable to pro-
vide an approximate coverage region having simple geo-
metric shape. Two particular forms of coverage region
are considered in this regard. One form results from
assigning a multivariate Gaussian (multi-normal) distri-
bution to Y , for example, on the basis of the central
limit theorem, in which case the smallest coverage re-
gion is bounded by a hyper-ellipsoid. The other form
constitutes a hyper-rectangular coverage region.

8 The role of measurement uncertainty
in deciding conformance to specified
requirements

8.1 Conformance assessment is an area of importance
to manufacturing industry and health and safety. In the
industrial inspection of manufactured parts, decisions
are made concerning the compatibility of the parts with
the design specification. Similar issues arise in the con-
text of regulation (relating to emissions, radiation, dope
testing, etc.) concerning whether stipulated limits have
been surpassed.

8.2 Measurement is intrinsic to conformance assess-
ment in deciding whether a quantity of interest (the out-
put quantity, or measurand) conforms to a specified re-
quirement. For a single (scalar) quantity, such a require-
ment typically takes the form of specification limits that
define an interval of permissible values of the quantity.
A quantity lying within this interval is said to be con-
forming, and non-conforming otherwise. The influence
of measurement uncertainty on the inspection process
necessitates a balance of risks between producers and
consumers.

8.3 The possible values of a quantity Y of interest
are represented by a PDF, in many cases summarized
by its expectation and standard deviation, taken to be
an estimate y of Y and an associated standard uncer-
tainty u(y), respectively (subclause 4.9). The probabil-
ity that the quantity conforms to specification can be
calculated, given this PDF and the specification limits.

8.4 Because of the incomplete knowledge of Y (as
encoded in the distribution for Y ), there is a risk of error
in deciding conformance to specification. Such errors are
of two types: a quantity accepted as conforming may
actually be non-conforming, and a quantity rejected as
non-conforming may actually conform.
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8.5 By defining an acceptance zone (or ‘region of per-
missible values’ [12]) of acceptable values of Y , the risks
of accept/reject decision errors can be balanced in such
a way as to minimize the costs associated with these
errors. A document [8] addresses the problem of calcu-
lating the conformance probability and the probabilities
of the two types of error, given the PDF, the specifica-
tion limits, and the limits of the acceptance zone. The
problem of choosing the acceptance zone limits is a de-
cision that depends on the implications of accept/reject
decision errors.

8.6 The general treatment is particularized to the
most important case in practice, viz., when the PDF is
Gaussian. Explicit formulae are provided in that case.

9 Applications of the least-squares
method

9.1 A document [3] provides guidance on the appli-
cation of the least-squares method, or least-squares ad-
justment (LSA), to data evaluation problems in metrol-
ogy. In such problems there is often an underlying re-
lationship between a stimulus variable and a response
variable. This relationship constitutes the basic model
of the parameter adjustment or curve-fitting problem.

9.2 In the context of calibration, a stimulus value
would typically be that of a certified reference standard,
and the response value that returned by the measuring
system for that stimulus value.

9.3 In the curve-fitting context, the stimulus would
correspond to an independent variable and the response
to a dependent variable. The adjustment procedure
used in the document is a generalized version of the
usual least-squares procedure.

9.4 The model contains not only the defined stimulus
and response quantities, but also other, unknown quan-
tities, parameters that do not vary with the stimulus.
The task is to estimate the parameters (and sometimes
even their number) from measured values of the stim-
ulus and the corresponding response quantity. These
measured values yield the input data to the adjustment
including the associated input uncertainty matrix. Be-
cause of possible correlations, this matrix (which con-
tains the squared standard uncertainties and the covari-
ances associated with the measured values) need not be
diagonal.

NOTE The document [3] treats the case of imperfectly
known stimulus values, corresponding, for example, to the
use of standards specified in terms of certified reference val-
ues and their associated standard uncertainties.

9.5 The application of the document [3] is not re-
stricted to curve-fitting problems in the strictest sense.
It can also be used to treat, for instance, unfolding prob-
lems, the multivariate adjustment of fundamental con-
stants, and key comparison data evaluation.

9.6 Typical measurement problems to which the doc-
ument [3] can be applied include (a) linear or non-linear
curve-fitting problems, including the case of imperfectly
known stimulus, and (b) fitting of general models to
identify physical parameters.

9.7 For problems of type (a) in subclause 9.6, once
the least-squares method has been used to estimate the
parameters of a calibration curve and evaluate the asso-
ciated uncertainty matrix, the corresponding instrument
will subsequently be used for measurement. Informa-
tion about the parameters of the calibration curve and
a particular response value is then used to infer the value
of the stimulus, which assumes the role of the measur-
and. There is one equation, given by the inverse use of
the calibration curve, for one output quantity. This is a
clearly defined problem of uncertainty evaluation, where
the output quantities of the adjustment problem enter
as input quantities to a measurement model. Guidance
on such evaluation tasks is given, with examples.

9.8 For problems of type (b) in subclause 9.6, or
in terms of determining the parameters in problems of
type (a), the adjustment problem is rarely a univari-
ate problem, namely involving the evaluation of only
one output quantity. Rather, the problem is generally
multivariate in which the mathematical formulation can
conveniently be expressed in terms of matrices. The
document [3] makes extensive use of matrix formalism,
which is well adapted to numerical solution using a com-
puter, as usually required in practice (cf. clause 7.5).
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