

International Organization of Legal Metrology

Organisation Internationale de Métrologie Légale

Applying Monte Carlo Methods during verification of measuring instruments

Jos G.M. van der Grinten NMi Certin B.V., The Netherlands

OIML Seminar on Smart Meters Brijuni, Croatia – 2-5 June 2009

Contents

- Introduction
- Monte Carlo
 - Uncertainty
 - Method
 - Examples
 - Validation
- Measurement based decisions
 - Driving too fast
 - Conformity assessment
- Verification and Monte Carlo Methods
- Conclusions

Introduction

- Laptops and PCs more powerful
- Monte Carlo Methods
- Uncertainty analysis
- And more ...
 - Confidence level of measurement based decisions
- Examples

Objective: Demonstrate that verification with Monte Carlo is very simple

Monte Carlo – Uncertainty

GUM

(Guide to the expression of Uncertainty in Measurement, 1993)

- Linear approximation: u(x) << x
- Corrections for known deviations

Monte Carlo – Uncertainty – 2

Not mentioned in the GUM:

- Conformity assessment
 - Testing versus tolerances
 - Not correcting for known deviations
- Modelling: e.g. regression
- Propagation of distributions
 Non-linear models and u(x) = O(x)
- More than one measurand

→ Joint Committee for Guides in Metrology
– Supplementary guides

Monte Carlo – Uncertainty – 3

 JCGM 101 (2008) or OIML G 1-101 (2008)

Evaluation of measurement data – Supplement 1 to the "Guide to the expression of uncertainty in measurement" – Propagation of distributions using a Monte Carlo method

Monte Carlo Simulation tool

Software for internal NMi use only

v 1.45

© NMi 2009

Monte Carlo – Method – 1

- Choose *M* trials
- Repeat for $k = 1 \dots M$
 - Generate $x_{1,k}$, $x_{2,k}$, ..., $x_{N,k}$
 - Calculate $y_k = f(x_{1,k}, x_{2,k}, \dots, x_{N,k})$
- Sort y_k in ascending order \rightarrow CDF

Monte Carlo – Method – 2

- Estimate of y is average of all y_k
- Associated standard uncertainty is the experimental standard deviation of y_k

- P($Y < y_q$) = q / M
- 95% coverage interval $[y_q, y_{q+0,95\cdot M}]$
- Symmetric coverage [y_{0,025·M} , y_{0,975·M}]
- Shortest coverage [y_q, y_{q+0,95·M}] min

Monte Carlo – Method – 3

PDF

Create histogram

Number of bins
Number of y in each bin

Scale histogram so that total area is unity

Monte Carlo – Examples

- $Y = X_1 + X_2$
 - Fill out formula '= x(1)+x(2)- Assign Gaussian distribution $\mu_{1,2} = 0, \ \sigma_{1,2} = 1$
- What do we expect for y and u(y)?
- Repeat with rectangular distribution with the same $\mu_{1,2} = 0$, $\sigma_{1,2} = 1$
- Compare 95% coverage intervals for Gaussian and rectangular PDFs

Monte Carlo – Validation

- 10 examples in GUM supplement
- Cases that have been analyzed analytically
 - Flow: master meter method
 - Force: bending an aluminium bar
- Comparison with NPL
 - Entirely different MC implementations
 - Different random number generators
 - Different seeding
 - Comparable results

Monte Carlo – Summary

- Monte Carlo simulations
 - Conceptually difficult
 - Right tool: accurate, easy & fast
 - Non-linear problems
- MCS tool works
 - Software validation completed
- Applications
 - Calibrations
 - Certification of facilities, e.g. EuroLoop

- Risk probability of taking a wrong decision
- Uncertainty (k=2)
 - range of values that can reasonably be attributed to the measurand
 - Cause for risk on an erroneous decision

• MID: more parties \rightarrow identical decision?

TRUE VALUE

TRUE VALUE

Speed enforcement by radar in NL

Range	Threshol d	MPE	U _{k=2}	
0 – 100 km/h	7 km/h	3 km/h	3,46 km/h	
MPE subtracted from observation				

Risk

Category	Criterion	Risk
Speed offence	> 4 km/h	< 0,01%
Losing licence	> 50 km/h	< 4,2%

Acceptable to driver and prosecution?

80

Conformity assessment

Test / verification: conforming or not
Inspection: non-conforming or not

M

TRUE VALUE

Risks accepted in practice

Activity	e <u><</u>	Risk <u><</u>
Type approval	MPE	50%
Type approval	MPE – U	2,3%
Type approval	6/5 MPE – U	21~50%
Init. verification	MPE	50%
Init. verification	MPE – U	2,3%
Init. verification	4/3 MPE – U	25~50%
Re-verification	MPE _{in-service}	50%
Re-verification	MPE _{in-service} – U	2,3%
Inspections	MPE _{in-service} + U	2,3%

Decisions – Summary

- Perspective
 - Manufacturer or Police
- Confidence level for decisions
 - What risk level is required so that a reliable decision is taken?
 - Huge palette of acceptance criteria to choose from

Remember the CDF

- All y in increasing order
- P($Y < y_q$) = q / M
- 95% coverage interval $[y_q, y_{q+0,95\cdot M}]$

95%

Verification and Monte Carlo

Hypothesis H₀: instrument is OK

TRUE VALU

Verification and Monte Carlo

Hypothesis H₁: motorist is driving too fast

Verification and Monte Carlo

Decision

- Confidence level = 95%, or
- Risk = 5%

95%

crit_

Monte Carlo software

 y_q

 y_1

tol

Preset confidence level, e.g. 95%

- H₀:Within criteria
- H₁:Within tolerances

crit

- H₂:Outside tolerances
- H₃:Outside criteria
- Undecided

 \boldsymbol{Y}_M

tol

Conclusions

- Monte Carlo also applicable in legal metrology
- As CDF is already available
- Decision is small addition to the Monte Carlo code
- Easy to operate
- Add to GUM suppl. conformity assess.

Thank you

